Tutorial: Deep Reinforcement Learning

David Silver, Google DeepMind
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making

- RL is for an agent with the capacity to act
- Each action influences the agent’s future state
- Success is measured by a scalar reward signal
- Goal: select actions to maximise future reward
Deep Learning in a nutshell

DL is a general-purpose framework for representation learning

- Given an **objective**
- Learn **representation** that is required to achieve objective
- Directly from **raw inputs**
- Using minimal domain knowledge
Deep Reinforcement Learning: \(AI = RL + DL \)

We seek a single agent which can solve any human-level task

- RL defines the objective
- DL gives the mechanism
- \(RL + DL = \) general intelligence
Examples of Deep RL @DeepMind

- **Play** games: Atari, poker, Go, ...
- **Navigate** worlds: 3D worlds, Labyrinth, ...
- **Control** physical systems: manipulate, walk, swim, ...
- **Interact** with users: recommend, optimise, personalise, ...
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
A deep representation is a composition of many functions:

\[x \rightarrow h_1 \rightarrow \ldots \rightarrow h_n \rightarrow y \rightarrow l \]

Its gradient can be backpropagated by the chain rule:

\[
\frac{\partial l}{\partial x} \leftarrow \frac{\partial l}{\partial h_1} \leftarrow \ldots \leftarrow \frac{\partial l}{\partial h_n} \leftarrow \frac{\partial y}{\partial h_n} \leftarrow \frac{\partial l}{\partial y} \]

\[
\frac{\partial h_1}{\partial w_1} \downarrow \quad \frac{\partial h_n}{\partial w_n} \downarrow
\]

\[
\frac{\partial l}{\partial w_1} \quad \ldots \quad \frac{\partial l}{\partial w_n}
\]
Deep Neural Network

A deep neural network is typically composed of:

- Linear transformations
 \[h_{k+1} = Wh_k \]

- Non-linear activation functions
 \[h_{k+2} = f(h_{k+1}) \]

- A loss function on the output, e.g.
 - Mean-squared error \(l = \|y^* - y\|^2 \)
 - Log likelihood \(l = \log \mathbb{P}[y^*] \)
Training Neural Networks by Stochastic Gradient Descent

- Sample gradient of expected loss $L(w) = \mathbb{E}[l]$

$$\frac{\partial l}{\partial w} \sim \mathbb{E} \left[\frac{\partial l}{\partial w} \right] = \frac{\partial L(w)}{\partial w}$$

- Adjust w down the sampled gradient

$$\Delta w \propto \frac{\partial l}{\partial w}$$
Weight Sharing

Recurrent neural network shares weights between time-steps

\[y_t \rightarrow h_t \rightarrow h_{t+1} \rightarrow \ldots \]

\[w \uparrow \]

\[x_t \uparrow \]

\[w \uparrow \]

\[x_{t+1} \uparrow \]

Convolutional neural network shares weights between local regions

\[x \rightarrow h_1 \rightarrow h_2 \rightarrow \ldots \]

\[w_1 \]

\[w_2 \]
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Many Faces of Reinforcement Learning
Agent and Environment

At each step t the agent:
- Executes action a_t
- Receives observation o_t
- Receives scalar reward r_t

The environment:
- Receives action a_t
- Emits observation o_{t+1}
- Emits scalar reward r_{t+1}
State

- Experience is a sequence of observations, actions, rewards

 \[o_1, r_1, a_1, \ldots, a_{t-1}, o_t, r_t \]

- The state is a summary of experience

 \[s_t = f(o_1, r_1, a_1, \ldots, a_{t-1}, o_t, r_t) \]

- In a fully observed environment

 \[s_t = f(o_t) \]
Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - **Policy**: agent's behaviour function
 - **Value function**: how good is each state and/or action
 - **Model**: agent’s representation of the environment
A policy is the agent’s behaviour.

It is a map from state to action:
- Deterministic policy: \(a = \pi(s) \)
- Stochastic policy: \(\pi(a|s) = \mathbb{P}[a|s] \)
Value Function

- A value function is a prediction of future reward
 - “How much reward will I get from action a in state s?”
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ

$$Q^\pi(a|s) = \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots \mid s, a \right]$$
Value Function

- A value function is a prediction of future reward
 - “How much reward will I get from action a in state s?”
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ
 - \[Q^\pi(a|s) = \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots \mid s, a \right] \]

- Value functions decompose into a Bellman equation
 - \[Q^\pi(a|s) = \mathbb{E}_{s', a'} \left[r + \gamma Q^\pi(a'|s') \mid s, a \right] \]
Optimal Value Functions

- An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi_\ast}(s, a) \]
Optimal Value Functions

▷ An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

▷ Once we have \(Q^* \) we can act optimally,

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]
Optimal Value Functions

▶ An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

▶ Once we have \(Q^* \) we can act optimally,

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

▶ Optimal value maximises over all decisions. Informally:

\[
Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + ... \\
= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})
\]
Optimal Value Functions

- An optimal value function is the maximum achievable value
 \[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

- Once we have \(Q^* \) we can act optimally,
 \[\pi^*(s) = \arg\max_a Q^*(s, a) \]

- Optimal value maximises over all decisions. Informally:
 \[Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \ldots \]
 \[= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]

- Formally, optimal values decompose into a Bellman equation
 \[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right] \]
Value Function Demo
Model

- Observation: o_t
- Action: a_t
- Reward: r_t
Model

- Model is learnt from experience
- Acts as proxy for environment
- Planner interacts with model
- e.g. using lookahead search
Approaches To Reinforcement Learning

Value-based RL
- Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy

Policy-based RL
- Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward

Model-based RL
- Build a model of the environment
- Plan (e.g. by lookahead) using model
Deep Reinforcement Learning

- Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- Optimise loss function by stochastic gradient descent
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Q-Networks

Represent value function by Q-network with weights w

$$Q(s, a, w) \approx Q^*(s, a)$$
Q-Learning

- Optimal Q-values should obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right] \]

- Treat right-hand side \(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) \) as a target

- Minimise MSE loss by stochastic gradient descent

\[l = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2 \]
Q-Learning

- Optimal Q-values should obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* | s, a \right] \]

- Treat right-hand side \(r + \gamma \max_{a'} Q(s', a', w) \) as a target

- Minimise MSE loss by stochastic gradient descent

\[l = \left(r + \gamma \max_{a} Q(s', a', w) - Q(s, a, w) \right)^2 \]

- Converges to \(Q^* \) using table lookup representation
Q-Learning

- Optimal Q-values should obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right] \]

- Treat right-hand side \(r + \gamma \max_{a'} Q(s', a', w) \) as a target

- Minimise MSE loss by stochastic gradient descent

\[l = \left(r + \gamma \max_{a} Q(s', a', w) - Q(s, a, w) \right)^2 \]

- Converges to \(Q^* \) using table lookup representation

- But **diverges** using neural networks due to:
 - Correlations between samples
 - Non-stationary targets
Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

\[
\begin{array}{|c|c|}
\hline
s_1, a_1, r_2, s_2 \\
\hline
s_2, a_2, r_3, s_3 \\
\hline
s_3, a_3, r_4, s_4 \\
\hline
\ldots \\
\hline
s_t, a_t, r_{t+1}, s_{t+1} \\
\hline
\end{array}
\rightarrow
\begin{array}{c}
s, a, r, s' \\
\end{array}
\]

Sample experiences from data-set and apply update

\[
l = \left(r + \gamma \max_{a'} Q(s', a', w^{-}) - Q(s, a, w) \right)^2
\]

To deal with non-stationarity, target parameters \(w^{-}\) are held fixed
Deep Reinforcement Learning in Atari
DQN in Atari

- End-to-end learning of values $Q(s, a)$ from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is $Q(s, a)$ for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
DQN Results in Atari

Video Pinball 336% 2539%
Boxing 1043% 1707%
Breakout 14% 1327%
Star Gunner 4% 598%
Robotank 273% 508%
Atlantis 398% 451%
Crazy Climber 51% 419%
Gopher 102% 400%
Demon Attack 11% 294%
Name This Game 11% 278%
Krug 222% 277%
Assault 31% 246%
Road Runner 0% 232%
Kangaroo 52% 224%
Tennis 159% 148%
James Bond 88% 145%
Pong 10% 132%
Space Invaders 7% 121%
Beam Rider 25% 119%
Tutankham 65% 112%
Kung-Fu Master 128% 102%
Freeway 68% 102%
Time Pilot 7% 100%
Enduro 51% 97%
Fishing Derby 6% 93%
Up and Down 35% 92%
Ice Hockey 68% 79%
Q* Bert 5% 78%
H.E.R.O. 25% 76%
Asterix 69% 69%
Battle Zone 67% 67%
Wizard of Wor 67% 67%
Chopper Command 64% 64%
Centipede 62% 62%
Bank Heist 57% 57%
River Raid 57% 57%
Armadar 43% 43%
Alien 42% 42%
Venture 32% 32%
Seaquest 25% 25%
Double Dunk 17% 17%
Bowling 14% 14%
Ms. Pacman 13% 13%
Asteroids 7% 7%
Frostbite 6% 6%
Gravitar 5% 5%
Private Eye 2% 2%
Montezuma's Revenge 0% 0%

at human-level or above

below human-level
DQN Atari Demo

DQN paper
www.nature.com/articles/nature14236

DQN source code:
sites.google.com/a/deepmind.com/dqn/
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to select actions
 - Older Q-network w^{-} is used to evaluate actions

$$l = \left(r + \gamma Q(s', \arg\max_{a'} Q(s', a', w), w^{-}) - Q(s, a, w) \right)^2$$
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to select actions
 - Older Q-network w^- is used to evaluate actions

$$l = \left(r + \gamma Q(s', \arg\max_{a'} Q(s', a', w), w^-) - Q(s, a, w) \right)^2$$

- **Prioritised replay**: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

$$\left| r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right|$$
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to select actions
 - Older Q-network w^- is used to evaluate actions

$$l = \left(r + \gamma Q(s', \text{argmax}_{a'} Q(s', a', w), w^-) - Q(s, a, w) \right)^2$$

- **Prioritised replay**: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

$$\left| r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right|$$

- **Dueling network**: Split Q-network into two channels
 - Action-independent value function $V(s, v)$
 - Action-dependent advantage function $A(s, a, w)$

$$Q(s, a) = V(s, v) + A(s, a, w)$$
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to **select** actions
 - Older Q-network w^- is used to **evaluate** actions

\[l = \left(r + \gamma Q(s', \arg\max_{a'} Q(s', a', w), w^-) - Q(s, a, w) \right)^2 \]

- **Prioritised replay**: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

\[\left| r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right| \]

- **Dueling network**: Split Q-network into two channels
 - Action-independent **value function** $V(s, v)$
 - Action-dependent **advantage function** $A(s, a, w)$

\[Q(s, a) = V(s, v) + A(s, a, w) \]

Combined algorithm: 3x mean Atari score vs Nature DQN
Gorila (General Reinforcement Learning Architecture)

- 10x faster than Nature DQN on 38 out of 49 Atari games
- Applied to recommender systems within Google
Asynchronous Reinforcement Learning

- Exploits multithreading of standard CPU
- Execute many instances of agent in parallel
- Network parameters shared between threads
- Parallelism decorrelates data
 - Viable alternative to experience replay
 - Parallelism decorrelates data
- Similar speedup to Gorila - on a single machine!
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Deep Policy Networks

- Represent policy by deep network with weights \mathbf{u}

 $$a = \pi(a|s, \mathbf{u}) \text{ or } a = \pi(s, \mathbf{u})$$

- Define objective function as total discounted reward

 $$L(\mathbf{u}) = \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots | \pi(\cdot, \mathbf{u})]$$

- Optimise objective end-to-end by SGD
- i.e. Adjust policy parameters \mathbf{u} to achieve more reward
Policy Gradients

How to make high-value actions more likely:

- The gradient of a stochastic policy $\pi(a|s,u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial \log \pi(a|s,u)}{\partial u} Q^\pi(s,a) \right]$$

- The gradient of a deterministic policy $a = \pi(s)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial Q^\pi(s,a)}{\partial a} \frac{\partial a}{\partial u} \right]$$

if a is continuous and Q is differentiable.
Policy Gradients

How to make high-value actions more likely:

▶ The gradient of a stochastic policy $\pi(a|s,u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial \log \pi(a|s,u)}{\partial u} Q^{\pi}(s,a) \right]$$

▶ The gradient of a deterministic policy $a = \pi(s)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial Q^{\pi}(s,a)}{\partial a} \frac{\partial a}{\partial u} \right]$$

▶ if a is continuous and Q is differentiable
Actor-Critic Algorithm

- Estimate value function $Q(s, a, \mathbf{w}) \approx Q^\pi(s, a)$
- Update policy parameters \mathbf{u} by stochastic gradient ascent

$$\frac{\partial l}{\partial \mathbf{u}} = \frac{\partial \log \pi(a|s, \mathbf{u})}{\partial \mathbf{u}} Q(s, a, \mathbf{w})$$

or

$$\frac{\partial l}{\partial \mathbf{u}} = \frac{\partial Q(s, a, \mathbf{w})}{\partial a} \frac{\partial a}{\partial \mathbf{u}}$$
Asynchronous Advantage Actor-Critic (A3C)

- Estimate state-value function
 \[V(s, v) \approx \mathbb{E} [r_{t+1} + \gamma r_{t+2} + \ldots | s] \]

- Q-value estimated by an \(n \)-step sample
 \[Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]
Asynchronous Advantage Actor-Critic (A3C)

- Estimate state-value function
 \[V(s, v) \approx \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | s] \]

- Q-value estimated by an \(n \)-step sample
 \[Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]

- Actor is updated towards target
 \[
 \frac{\partial l_u}{\partial u} = \frac{\partial \log \pi(a_t | s_t, u)}{\partial u} (Q(s_t, a_t) - V(s_t, v))
 \]

- Critic is updated to minimise MSE w.r.t. target
 \[l_v = (Q(s_t, a_t) - V(s_t, v))^2 \]
Asynchronous Advantage Actor-Critic (A3C)

- Estimate state-value function
 \[V(s, v) \approx \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | s] \]

- Q-value estimated by an \(n \)-step sample
 \[Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]

- Actor is updated towards target
 \[
 \frac{\partial l_u}{\partial u} = \frac{\partial \log \pi (a_t | s_t, u)}{\partial u} (Q(s_t, a_t) - V(s_t, v))
 \]

- Critic is updated to minimise MSE w.r.t. target
 \[l_v = (Q(s_t, a_t) - V(s_t, v))^2 \]

- 4x mean Atari score vs Nature DQN
Deep Reinforcement Learning in Labyrinth
A3C in Labyrinth

- End-to-end learning of softmax policy $\pi(a|s_t)$ from pixels
- Observations o_t are raw pixels from current frame
- State $s_t = f(o_1, \ldots, o_t)$ is a recurrent neural network (LSTM)
- Outputs both value $V(s)$ and softmax over actions $\pi(a|s)$
- Task is to collect apples (+1 reward)
A3C Labyrinth Demo

Demo:
www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be

Labyrinth source code (coming soon):
sites.google.com/a/deepmind.com/labyrinth/
Deep Reinforcement Learning with Continuous Actions

How can we deal with high-dimensional continuous action spaces?
- Can’t easily compute \(\max_a Q(s, a) \)
 - Actor-critic algorithms learn without max
- Q-values are differentiable w.r.t. \(a \)
 - Deterministic policy gradients exploit knowledge of \(\frac{\partial Q}{\partial a} \)
Deep DPG

DPG is the continuous analogue of DQN

- **Experience replay**: build data-set from agent’s experience
- **Critic** estimates value of current policy by DQN

\[
l_w = \left(r + \gamma Q(s', \pi(s', u^-), w^-) - Q(s, a, w) \right)^2
\]

To deal with non-stationarity, targets \(u^-, w^- \) are held fixed

- **Actor** updates policy in direction that improves \(Q \)

\[
\frac{\partial l_u}{\partial u} = \frac{\partial Q(s, a, w)}{\partial a} \frac{\partial a}{\partial u}
\]

- In other words, critic provides loss function for actor
DPG in Simulated Physics

- Physics domains are simulated in MuJoCo
- End-to-end learning of control policy from raw pixels \(s \)
- Input state \(s \) is stack of raw pixels from last 4 frames
- Two separate convnets are used for \(Q \) and \(\pi \)
- Policy \(\pi \) is adjusted in direction that most improves \(Q \)
DPG in Simulated Physics Demo

- Demo: DPG from pixels
A3C in Simulated Physics Demo

- Asynchronous RL is viable alternative to experience replay
- Train a hierarchical, recurrent locomotion controller
- Retrain controller on more challenging tasks
Can deep RL find Nash equilibria in multi-agent games?

- Q-network learns “best response” to opponent policies
 - By applying DQN with experience replay
 - c.f. fictitious play
- Policy network \(\pi(a|s,u) \) learns an average of best responses
 \[
 \frac{\partial l}{\partial u} = \frac{\partial \log \pi(a|s,u)}{\partial u}
 \]
- Actions a sample mix of policy network and best response
Neural FSP in Texas Hold’em Poker

- Heads-up limit Texas Hold’em
- NFSP with raw inputs only (no prior knowledge of Poker)
- vs SmooCT (3x medal winner 2015, handcrafted knowledge)
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Learning Models of the Environment

- Demo: generative model of Atari
- Challenging to plan due to compounding errors
 - Errors in the transition model compound over the trajectory
 - Planning trajectories differ from executed trajectories
 - At end of long, unusual trajectory, rewards are totally wrong
Deep Reinforcement Learning in Go

What if we have a perfect model? e.g. game rules are known

AlphaGo paper:
www.nature.com/articles/nature16961

AlphaGo resources:
deepmind.com/alphago/
Conclusion

- General, stable and scalable RL is now possible
- Using deep networks to represent value, policy, model
- Successful in Atari, Labyrinth, Physics, Poker, Go
- Using a variety of deep RL paradigms