
A tutorial on active learning

Sanjoy Dasgupta1 John Langford2

UC San Diego1

Yahoo Labs2

Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Unlabeled points

Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Unlabeled points Supervised learning

Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Unlabeled points Supervised learning Semisupervised and
active learning

Active learning example: drug design [Warmuth et al 03]

Goal: find compounds which bind to a particular target

Large collection of compounds, from:

◮ vendor catalogs

◮ corporate collections

◮ combinatorial chemistry

unlabeled point ≡ description of chemical compound

label ≡ active (binds to target) vs. inactive

getting a label ≡ chemistry experiment

Active learning example: pedestrian detection [Freund et al 03]

Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Biased sampling: the
labeled points are not
representative of the
underlying distribution!

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

Manifestation in practice, eg. Schutze et al 03.

Can adaptive querying really help?

There are two distinct narratives for explaining how adaptive
querying can help.

Case I: Exploiting (cluster) structure in data

Case II: Efficient search through hypothesis space

Case I: Exploiting cluster structure in data

Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

Case I: Exploiting cluster structure in data

Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

Challenges: In general, the cluster structure (i) is not so clearly
defined and (ii) exists at many levels of granularity. And the
clusters themselves might not be pure in their labels. How to
exploit whatever structure happens to exist?

Case II: Efficient search through hypothesis space

Ideal case: each query cuts the version space in two.

+ −

H

Then perhaps we need just log |H| labels to get a perfect
hypothesis!

Case II: Efficient search through hypothesis space

Ideal case: each query cuts the version space in two.

+ −

H

Then perhaps we need just log |H| labels to get a perfect
hypothesis!

Challenges: (1) Do there always exist queries that will cut off a
good portion of the version space? (2) If so, how can these queries
be found? (3) What happens in the nonseparable case?

Outline of tutorial

I. Exploiting (cluster) structure in data

II. Efficient search through hypothesis space

Sine qua non: statistical consistency.

A cluster-based active learning scheme [ZGL 03]

(1) Build neighborhood graph

A cluster-based active learning scheme [ZGL 03]

(1) Build neighborhood graph (2) Query some random points

1

0

A cluster-based active learning scheme [ZGL 03]

(1) Build neighborhood graph (2) Query some random points

1

0

(3) Propagate labels

1

0

.2
.5

.8

.8

.7

.6

.4

A cluster-based active learning scheme [ZGL 03]

(1) Build neighborhood graph (2) Query some random points

1

0

(3) Propagate labels

1

0

.2
.5

.8

.8

.7

.6

.4

(4) Make query and go to (3)

1

0

.2
.5

.8

.8

.7

.6

.4

A cluster-based active learning scheme [ZGL 03]

(1) Build neighborhood graph (2) Query some random points

1

0

(3) Propagate labels

1

0

.2
.5

.8

.8

.7

.6

.4

(4) Make query and go to (3)

1

0

.2
.5

.8

.8

.7

.6

.4

Clusters in data ⇒ graph cut which curtails propagation of influence

Exploiting cluster structure in data [DH 08]

Basic primitive:

◮ Find a clustering of the data

◮ Sample a few randomly-chosen points in each cluster

◮ Assign each cluster its majority label

◮ Now use this fully labeled data set to build a classifier

Exploiting cluster structure in data [DH 08]

Basic primitive:

◮ Find a clustering of the data

◮ Sample a few randomly-chosen points in each cluster

◮ Assign each cluster its majority label

◮ Now use this fully labeled data set to build a classifier

⇒

Finding the right granularity

Unlabeled data

Finding the right granularity

Unlabeled data Find a clustering

Finding the right granularity

Unlabeled data Find a clustering

Ask for some labels

Finding the right granularity

Unlabeled data Find a clustering

Ask for some labels

Now what?

Finding the right granularity

Unlabeled data Find a clustering

Ask for some labels

Now what?

Refine the clustering

Using a hierarchical clustering

Rules:

◮ Always work with some pruning of the hierarchy: a clustering
induced by the tree. Pick a cluster (intelligently) and query a
random point in it.

◮ For each tree node (i.e. cluster) v maintain: (i) majority label L(v);
(ii) empirical label frequencies p̂v,l ; and (iii) confidence interval
[plb

v,l , p
ub
v,l]

Algorithm: hierarchical sampling

Input: Hierarchical clustering T

For each node v maintain: (i) majority label L(v); (ii) empirical
label frequencies p̂v,l ; and (iii) confidence interval [plb

v,l , p
ub
v,l]

Initialize: pruning P = {root}, labeling L(root) = ℓ0

for t = 1, 2, 3, . . . :

◮ v = select-node(P)
◮ pick a random point z in subtree Tv and query its label
◮ update empirical counts for all nodes along path from z to v
◮ choose best pruning and labeling (P ′, L′) of Tv

◮ P = (P \ {v}) ∪ P ′ and L(u) = L′(u) for all u in P ′

for each v in P : assign each leaf in Tv the label L(v)

return the resulting fully labeled data set

v = select-node(P) ≡

{
Prob[v] ∝ |Tv | random sampling

Prob[v] ∝ |Tv |(1 − plb
v,l) active sampling

Outline of tutorial

I. Exploiting (cluster) structure in data

II. Efficient search through hypothesis space

(a) The separable case
(b) The general case

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ǫ, need ≈ 1/ǫ labeled
points.

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ǫ, need ≈ 1/ǫ labeled
points.

Active learning: instead, start with 1/ǫ unlabeled points.

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ǫ, need ≈ 1/ǫ labeled
points.

Active learning: instead, start with 1/ǫ unlabeled points.

Binary search: need just log 1/ǫ labels, from which the rest can be
inferred. Exponential improvement in label complexity!

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ǫ, need ≈ 1/ǫ labeled
points.

Active learning: instead, start with 1/ǫ unlabeled points.

Binary search: need just log 1/ǫ labels, from which the rest can be
inferred. Exponential improvement in label complexity!

Challenges: Nonseparable data? Other hypothesis classes?

Some results of active learning theory

Separable data General (nonseparable) data
Query by committee

Aggressive (Freund, Seung, Shamir, Tishby, 97)
Splitting index (D, 05)
Generic active learner A2 algorithm
(Cohn, Atlas, Ladner, 91) (Balcan, Beygelzimer, L, 06)

Disagreement coefficient
Mellow (Hanneke, 07)

Reduction to supervised
(D, Hsu, Monteleoni, 2007)
Importance-weighted approach
(Beygelzimer, D, L, 2009)

Some results of active learning theory

Separable data General (nonseparable) data
Query by committee

Aggressive (Freund, Seung, Shamir, Tishby, 97)
Splitting index (D, 05)
Generic active learner A2 algorithm
(Cohn, Atlas, Ladner, 91) (Balcan, Beygelzimer, L, 06)

Disagreement coefficient
Mellow (Hanneke, 07)

Reduction to supervised
(D, Hsu, Monteleoni, 2007)
Importance-weighted approach
(Beygelzimer, D, L, 2009)

Issues:

Computational tractability

Are labels being used as efficiently as possible?

A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed?

A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of uncertainty

A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of uncertainty

Problems: (1) intractable to maintain Ht ; (2) nonseparable data.

Maintaining Ht

Explicitly maintaining Ht is intractable. Do it implicitly, by
reduction to supervised learning.

Explicit version

H1 = hypothesis class
For t = 1, 2, . . .:

Receive unlabeled point xt

If disagreement in Ht about xt ’s label:
query label yt of xt

Ht+1 = {h ∈ Ht : h(xt) = yt}
else:

Ht+1 = Ht

Implicit version

S = {} (points seen so far)
For t = 1, 2, . . .:

Receive unlabeled point xt

If learn(S ∪ (xt , 1)) and learn(S ∪ (xt , 0))
both return an answer:

query label yt

else:
set yt to whichever label succeeded

S = S ∪ {(xt , yt)}

Maintaining Ht

Explicitly maintaining Ht is intractable. Do it implicitly, by
reduction to supervised learning.

Explicit version

H1 = hypothesis class
For t = 1, 2, . . .:

Receive unlabeled point xt

If disagreement in Ht about xt ’s label:
query label yt of xt

Ht+1 = {h ∈ Ht : h(xt) = yt}
else:

Ht+1 = Ht

Implicit version

S = {} (points seen so far)
For t = 1, 2, . . .:

Receive unlabeled point xt

If learn(S ∪ (xt , 1)) and learn(S ∪ (xt , 0))
both return an answer:

query label yt

else:
set yt to whichever label succeeded

S = S ∪ {(xt , yt)}

This scheme is no worse than straight supervised learning. But can
one bound the number of labels needed?

Label complexity [Hanneke]

The label complexity of CAL (mellow, separable) active learning can be
captured by the the VC dimension d of the hypothesis and by a parameter θ
called the disagreement coefficient.

Label complexity [Hanneke]

The label complexity of CAL (mellow, separable) active learning can be
captured by the the VC dimension d of the hypothesis and by a parameter θ
called the disagreement coefficient.

◮ Regular supervised learning, separable case.

Suppose data are sampled iid from an underlying distribution. To get a
hypothesis whose misclassification rate (on the underlying distribution) is
≤ ǫ with probability ≥ 0.9, it suffices to have

d

ǫ

labeled examples.

Label complexity [Hanneke]

The label complexity of CAL (mellow, separable) active learning can be
captured by the the VC dimension d of the hypothesis and by a parameter θ
called the disagreement coefficient.

◮ Regular supervised learning, separable case.

Suppose data are sampled iid from an underlying distribution. To get a
hypothesis whose misclassification rate (on the underlying distribution) is
≤ ǫ with probability ≥ 0.9, it suffices to have

d

ǫ

labeled examples.

◮ CAL active learner, separable case.

Label complexity is

θd log
1

ǫ

Label complexity [Hanneke]

The label complexity of CAL (mellow, separable) active learning can be
captured by the the VC dimension d of the hypothesis and by a parameter θ
called the disagreement coefficient.

◮ Regular supervised learning, separable case.

Suppose data are sampled iid from an underlying distribution. To get a
hypothesis whose misclassification rate (on the underlying distribution) is
≤ ǫ with probability ≥ 0.9, it suffices to have

d

ǫ

labeled examples.

◮ CAL active learner, separable case.

Label complexity is

θd log
1

ǫ
◮ There is a version of CAL for nonseparable data. (More to come!)

If best achievable error rate is ν, suffices to have

θ

„

d log2 1

ǫ
+

dν2

ǫ2

«

labels. Usual supervised requirement: d/ǫ2.

Disagreement coefficient [Hanneke]

Let P be the underlying probability distribution on input space X .
Induces (pseudo-)metric on hypotheses: d(h, h′) = P[h(X) 6= h′(X)].
Corresponding notion of ball B(h, r) = {h′ ∈ H : d(h, h′) < r}.

Disagreement region of any set of candidate hypotheses V ⊆ H:

DIS(V) = {x : ∃h, h′ ∈ V such that h(x) 6= h
′(x)}.

Disagreement coefficient for target hypothesis h∗ ∈ H:

θ = sup
r

P[DIS(B(h∗, r))]

r
.

h*

h

d(h∗, h) = P[shaded region] Some elements of B(h∗, r) DIS(B(h∗, r))

Disagreement coefficient: separable case

Let P be the underlying probability distribution on input space X .
Let Hǫ be all hypotheses in H with error ≤ ǫ. Disagreement region:

DIS(Hǫ) = {x : ∃h, h′ ∈ Hǫ such that h(x) 6= h′(x)}.

Then disagreement coefficient is

θ = sup
ǫ

P[DIS(Hǫ)]

ǫ
.

Disagreement coefficient: separable case

Let P be the underlying probability distribution on input space X .
Let Hǫ be all hypotheses in H with error ≤ ǫ. Disagreement region:

DIS(Hǫ) = {x : ∃h, h′ ∈ Hǫ such that h(x) 6= h′(x)}.

Then disagreement coefficient is

θ = sup
ǫ

P[DIS(Hǫ)]

ǫ
.

Example: H = {thresholds in R}, any data distribution.

target

Therefore θ = 2.

Disagreement coefficient: examples [H ’07, F ’09]

Disagreement coefficient: examples [H ’07, F ’09]

◮ Thresholds in R, any data distribution.

θ = 2.

Label complexity O(log 1/ǫ).

Disagreement coefficient: examples [H ’07, F ’09]

◮ Thresholds in R, any data distribution.

θ = 2.

Label complexity O(log 1/ǫ).

◮ Linear separators through the origin in R
d , uniform data distribution.

θ ≤
√

d .

Label complexity O(d3/2 log 1/ǫ).

Disagreement coefficient: examples [H ’07, F ’09]

◮ Thresholds in R, any data distribution.

θ = 2.

Label complexity O(log 1/ǫ).

◮ Linear separators through the origin in R
d , uniform data distribution.

θ ≤
√

d .

Label complexity O(d3/2 log 1/ǫ).

◮ Linear separators in R
d , smooth data density bounded away from zero.

θ ≤ c(h∗)d

where c(h∗) is a constant depending on the target h∗.

Label complexity O(c(h∗)d2 log 1/ǫ).

Gimme the algorithms

1. The A2 algorithm.

2. Limitations

3. IWAL

The A2 Algorithm in Action

0 1
0

0.5
E

rr
or

 R
at

e

Threshold/Input Feature

Error Rates of Threshold Function

Problem: find the optimal threshold function on the [0, 1] interval
in a noisy domain.

Sampling

0 0 0 0 0 0

0 1
0

0.5
E

rr
or

 R
at

e

Threshold/Input Feature

1 1 1 1

Labeled
Samples

Label samples at random.

Bounding

0 0 0 0 0 0

0 1
0

0.5

E
rr

or
 R

at
e

Threshold/Input Feature

1 1 1 1

Upper Bound

Lower
Bound

Compute upper and lower bounds on the error rate of each
hypothesis.
Theorem: For all H, for all D, for all numbers of samples m,

Pr(|true error rate− empirical error rate| ≤ f (H, δ,m)) ≥ 1− δ

Eliminating

0 0 0 0 0 0
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

0 1
0

0.5
E

rr
or

 R
at

e

Threshold/Input Feature

1 1 1 1

Elimination

Chop away part of the hypothesis space, implying that you cease
to care about part of the feature space.

Eliminating

0 0 0 0 0 0
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

0 1
0

0.5
E

rr
or

 R
at

e

Threshold/Input Feature

1 1 1 1

Elimination

Chop away part of the hypothesis space, implying that you cease
to care about part of the feature space. Recurse!

What is this master algorithm?

Let e(h,D) = Prx ,y∼D(h(x) 6= y)

What is this master algorithm?

Let e(h,D) = Prx ,y∼D(h(x) 6= y)

Let UB(S , h) = upper bound on e(h,D) assuming S IID from D.
Let LB(S , h) = lower bound on e(h,D) assuming S IID from D.

What is this master algorithm?

Let e(h,D) = Prx ,y∼D(h(x) 6= y)

Let UB(S , h) = upper bound on e(h,D) assuming S IID from D.
Let LB(S , h) = lower bound on e(h,D) assuming S IID from D.

Disagree(H,D) = Prx ,y∼D(∃h, h′ ∈ H : h(x) 6= h′(x))

What is this master algorithm?

Let e(h,D) = Prx ,y∼D(h(x) 6= y)

Let UB(S , h) = upper bound on e(h,D) assuming S IID from D.
Let LB(S , h) = lower bound on e(h,D) assuming S IID from D.

Disagree(H,D) = Prx ,y∼D(∃h, h′ ∈ H : h(x) 6= h′(x))

Done(H,D) =

(min
h∈H

UB(S , h)−min
h∈H

LB(S , h))Disagree(H,D)

Agnostic Active (error rate ǫ, classifiers H)

while Done(H,D) > ǫ:
S = ∅, H ′ = H

while Disagree(H ′,D) ≥ 1
2Disagree(H,D):

if Done(H ′,D) < ǫ: return h ∈ H ′

S ′= 2|S |+ 1 unlabeled x which H disagrees on
S = {(x ,Label(x)) : x ∈ S ′}
H ′ ← {h ∈ H : LB(S , h) ≤ minh′∈H UB(S , h′)}

H ← H ′

return h ∈ H

Agnostic Active: result

Theorem: There exists an algorithm Agnostic Active that:

1. (Correctness) For all H,D, ǫ with probability 0.99 returns an
ǫ-optimal c .

2. (Fall-Back) For all H,D the number of labeled samples
required is O(Batch).

3. (Structured Low noise) For all H,D with disagreement
coefficient θ and d = VC (H) with ν < ǫ, Õ

(
θ2d ln2 1

ǫ

)

labeled examples suffice.

4. (Structured High noise) For all H,D with disagreement

coefficient θ and d = VC (H) with ν > ǫ, Õ
(

θ2ν2

ǫ2 d
)

labeled

examples suffice.

Proof of low noise/high speedup case

0 1

The Noiseless Case

Threshold

E
rr

or
 R

at
e

measure = DX (x)

ν noise can not significantly alter this picture for ν small.

⇒ constant classifier fraction has error rate > 0.25.

⇒ O(ln 1
δ
) labeled examples gives error rates of all thresholds up

to tolerance 1
8 with probability 1− δ

General low noise/high speedup case

⇒ constant classifier fraction has error rate > 0.25.

⇒ O(θ2(d + ln 1
δ
)) labeled examples gives error rates of all

classifiers up to tolerance 1
8 with probability 1− δ

Proof of low noise/high speedup case II

0 1

The Noiseless Case

Threshold
E

rr
or

 R
at

e

⇒ 1
2 fraction of “far” classifiers eliminatable via bound algebra.

⇒ Problem recurses. Spreading δ across recursions implies result.

Proof of high noise/low speedup case

low noise/high speedup theorem ⇒ Disagree(C ,D) ≃ ν after few
examples.

Done(C ,D)
= [minc∈C UB(S , c)−minc∈C LB(S , c)]Disagree(C ,D)
= [minc∈C UB(S , c)−minc∈C LB(S , c)]ν

⇒ Computing bounds to error rate ǫ
ν

makes Done(C ,D) ≃ ǫ

Õ
(

θ2ν2

ǫ2 d
)

samples suffice.

Gimme the algorithms

1. The A2 algorithm

2. Limitations

3. IWAL

What’s wrong with A2?

What’s wrong with A2?

1. Unlabeled complexity You need infinite unlabeled data to
measure Disagree(C ,D) to infinite precision.

2. Computation You need to enumerate and check
hypotheses—exponentially slower and exponentially more
space than common learning algorithms.

3. Label Complexity Can’t get logarithmic label complexity for
ǫ < ν.

4. Label Complexity Throwing away examples from previous
iterations can’t be optimal, right?

5. Label Complexity Bounds are often way too loose.

6. Generality We care about more than 0/1 loss.

What’s wrong with A2?

1. Unlabeled complexity [DHM07]

2. Computation [DHM07] partially, [Beygelzimer, D, L, 2009],
partially.

3. Label Complexity [Kaariainen 2006], Log is impossible for
small ǫ.

4. Label Complexity [DHM07], use all labels for all decisions.

5. Label Complexity [BDL09] Importance weights partially
address loose bounds.

6. Generality [BDL09] Importance weights address other losses.

An improved lower bound for Active Learning
Theorem: [BDL09] For all H with VC (H) = d , for all ǫ, ν > 0 with
ǫ < ν

2 < 1
8 , there exists D, such that all active learning algorithms

require:

Ω

(
dν2

ǫ2

)

samples to achieve to find an h satisfying e(h,D) < ν + ǫ.

An improved lower bound for Active Learning
Theorem: [BDL09] For all H with VC (H) = d , for all ǫ, ν > 0 with
ǫ < ν

2 < 1
8 , there exists D, such that all active learning algorithms

require:

Ω

(
dν2

ǫ2

)

samples to achieve to find an h satisfying e(h,D) < ν + ǫ.

Implication: For ǫ =
√

dν
T

as in supervised learning, all label

complexity bounds must have a dependence on:

dν2

ǫ2
=

dν2

dν
T

= Tν

An improved lower bound for Active Learning
Theorem: [BDL09] For all H with VC (H) = d , for all ǫ, ν > 0 with
ǫ < ν

2 < 1
8 , there exists D, such that all active learning algorithms

require:

Ω

(
dν2

ǫ2

)

samples to achieve to find an h satisfying e(h,D) < ν + ǫ.

Implication: For ǫ =
√

dν
T

as in supervised learning, all label

complexity bounds must have a dependence on:

dν2

ǫ2
=

dν2

dν
T

= Tν

Proof sketch:

1. VC(H) = d means there are d inputs x where the prediction
can go either way.

2. Make |P(y = 1|x) − P(y = 0|x)| = 2ǫ
ν+2ǫ

on these points.

3. Apply coin flipping lower bound for determining whether
heads or tails is most common.

Gimme the algorithms

1. The A2 algorithm.

2. Limitations

3. IWAL

IWAL(subroutine Rejection-Threshold)

S = ∅
While (unlabeled examples remain)

1. Receive unlabeled example x .

2. Set p = Rejection-Threshold(x ,S).

3. If U(0, 1) ≤ p, get label y , and add (x , y , 1
p
) to S .

4. Let h = Learn(S).

IWAL: fallback result

Theorem: For all choices of Rejection-Threshold if for all x ,S :

Rejection-Threshold(x ,S) ≥ pmin

then IWAL is at most a constant factor worse than supervised
learning.
Proof: Standard PAC/VC analysis, except with a martingale.
But is it better than supervised learning?

Loss-weighting(unlabeled example x , history S)

1. Let HS =hypotheses that we might eventually choose,
assuming the distribution is IID.

2. Return maxf ,g∈HS ,y ℓ(f (x), y)− ℓ(g(x), y)

Loss-weighting safety

(Not trivial, because sometimes 0 is returned)
Theorem: IWAL(Loss-weighting) competes with supervised
learning.

But does it give us speedups?

The Slope Asymmetry

For two predictions z,z’ what is the ratio of the maximum and
minimum change in loss as a function of y?

Cℓ = sup
z ,z ′

maxy∈Y |ℓ(z , y)− ℓ(z ′, y)|

miny∈Y |ℓ(z , y)− ℓ(z ′, y)|

= generalized maximum derivative ratio of loss function ℓ.

= 1 for 0/1 loss.

= 1 for hinge loss on [−1, 1] (i.e. normalized margin SVM)

≤ 1 + eB for logistic in [−B ,B]

∞ for squared loss.

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1 0 1 2 3

Lo
ss

 v
al

ue

Margin

Logistic Loss

log(1+exp(-x))
max derivative
min derivative

Generalized Disagreement Coefficient

Was:

θ = sup
r

P[DIS(B(h∗, r))]

r

= sup
r

Ex∼D I [∃h, h′ ∈ B(h∗, r) : h(x) 6= h′(x)]

r

Generalized:

θ = sup
r

Ex∼D maxh∈B(h∗ ,r) maxy |ℓ(h(x), y) − ℓ(h∗(x), y)|

r

Big disagreement coefficient ⇔ near optimal hypotheses often
disagree in loss.

Sufficient conditions for IWAL(Loss-weighting)

Let ν = minh∈H Ex ,y∼Dℓ(h(x), y) = minimum possible loss rate.

Theorem: For all learning problems D, for all hypothesis sets H,
the label complexity after T unlabeled samples is at most:

θCl

(
νT +

√
T ln

|H|T

δ

)

(up to constants)

Experiments in the convex case

If:

1. Loss is convex

2. Representation is linear

Then computation is easy.(*)

(*) caveat: you can’t quite track HS perfectly, so must have
minimum sample probability for safety.

Experiments in the nonconvex case

But, sometimes a linear predictor isn’t the best predictor. What do
we do?
Bootstrap(unlabeled example x , history S)

1. If |S | < t return 1.

2. If |S | = t train 10 hypotheses H ′ = {h1, ..., h10} using a
bootstrap sample.

3. If |S | ≥ t return
pmin + (1− pmin)maxf ,g∈H,y ℓ(f (x), y) − ℓ(g(x), y)

Label savings results

Logistic/interior point Online Constrained MNist 65%

J48 Batch Bootstrap MNist 35%

J48 Batch Bootstrap Adult 60%

J48 Batch Bootstrap Pima 32%

J48 Batch Bootstrap Yeast 19%

J48 Batch Bootstrap Spambase 55%

J48 Batch Bootstrap Waveform 16%

J48 Batch Bootstrap Letter 25%

In all cases active learner’s prediction performance ≃ supervised
prediction performance. (In fact, more often better than worse.)

An Example Plot: J48/Batch Bootstrap/MNist 3 vs 5

 200

 300

 400

 500

 600

 700

 200 400 600 800 1000 1200 1400 1600 1800 2000

te
st

 e
rr

or
 (

ou
t o

f 2
00

0)

number of points seen

supervised
active

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000
nu

m
be

r
of

 p
oi

nt
s

qu
er

ie
d

number of points seen

supervised
active

Active learner marginally outperforms supervised learner on the
same number of examples while using only 2/3rds as many labels.

What the theory says

Active Learning applies anywhere supervised learning applies.
Current techniques help best when:

1. Discrete loss Hard choices with discrete losses are made.

2. Low noise The best predictor has small error.

3. Constrained H The set of predictors you care about is
constrained.

4. Low Data You don’t already have lots of labeled data.

Future work for all of us

1. Foundations Is active learning possible in a fully adversarial
setting?

2. Application Is an active learning reduction to supervised
possible without constraints?

3. Extension What about other settings for interactive learning?
(structured? partial label? Differing oracles with differing
expertise?)

4. Empirical Can we achieve good active learning performance
with a consistent algorithm on a state-of-the-art problem?

Further discussion at http://hunch.net

Bibliography

1. Yotam Abramson and Yoav Freund, Active Learning for Visual
Object Recognition, UCSD tech report.

2. Nina Balcan, Alina Beygelzimer, John Langford, Agnostic
Active Learning. ICML 2006

3. Alina Beygelzimer, Sanjoy Dasgupta, and John Langford,
Importance Weighted Active Learning, ICML 2009.

4. David Cohn, Les Atlas and Richard Ladner. Improving
generalization with active learning, Machine Learning
15(2):201-221, 1994.

5. Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for
active learning. ICML 2008.

6. Sanjoy Dasgupta, Coarse sample complexity bounds for active
learning. NIPS 2005.

Bibliography II

1. Sanjoy Dasgupta, Daniel J. Hsu, and Claire Monteleoni. A
general agnostic active learning algorithm. NIPS 2007.

2. Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali
Tishby, Selective Sampling Using the Query by Committee
Algorithm, Machine Learning, 28, 133-168, 1997.

3. Hanneke, S. A Bound on the Label Complexity of Agnostic
Active Learning. ICML 2007.

4. Manfred K. Warmuth, Gunnar Ratsch, Michael Mathieson,
Jun Liao, and Christian Lemmon, Active Learning in the Drug
Discovery Process, NIPS 2001.

5. Xiaojin Zhu, John Lafferty and Zoubin Ghahramani,
Combining active learning and semi-supervised learning using
Gaussian fields and harmonic functions, ICML 2003 workshop

