Research Political Issues

I’ve avoided discussing politics here, although not for lack of interest. The problem with discussing politics is that it’s customary for people to say much based upon little information. Nevertheless, politics can have a substantial impact on science (and we might hope for the vice-versa). It’s primary election time in the United States, so the topic is timely, although the issues are not.

There are several policy decisions which substantially effect development of science and technology in the US.

  1. Education The US has great contrasts in education. The top universities are very good places, yet the grade school education system produces mediocre results. For me, the contrast between a public education and Caltech was bracing. For many others attending Caltech, it clearly was not. Upgrading the k-12 education system in the US is a long-standing chronic problem which I know relatively little about. My own experience is that a basic attitude of “no child unrealized” is better than “no child left behind”. A fair claim can also be made that the US just doesn’t invest enough.
  2. Respect Lack of respect for science and technology is routinely expressed in many ways in the US.
    1. The most bald form of lack of respect is scientific censorship. This may be easily understood as a generality: you choose to spend a large fraction of your life learning to interpret some part of the world. After years, you come to some conclusion about the nature of the world. Then, someone with no particular experience or expertise tells you to alter it.
    2. A more refined form of lack of respect is simply lack of presence in decision making. This isn’t necessarily intentional: many people simply make decisions from the gut, and then come up with reasons to justify their decision. This style explicitly cuts out the deep thinking of science. Many policies could have been better informed by a serious consideration of even basic science:
      1. The oil of Iraq is fundamentally less valuable if we are going to tackle global warming.
      2. Swapping gasoline for hydrogen-based transportable energy source is dubious because it introduces another energy storage conversion to lose energy on. The same goes for swapping bioethanol for gasoline. In contrast, hybrid and electric vehicles actually recover substantial energy from regenerative braking, and a plug-in hybrid could run off electricity in typical commuter usage.
      3. The Space Shuttle is a boondoggle design. The rocket equation implies that the ratio of initial to final mass for vehicles reaching earth orbit must be at least a factor of e2.5 (it’s actually e2.93 for the Space Shuttle). Making the system reusable implies that most of this mass returns to earth so the payload deliverable into space is only 1.2% of the liftoff mass. A better designed system might deliver payloads a factor of 4 larger or be much smaller.
      4. Passenger Inspections at airports is another poor policy from the perspective of science. It isn’t effective, and there is no cost-efficient way to make it effective against a motivated opponent. Solid evidence for this is the continued use of mules to smuggle drugs. The basic problem from a chemistry point of view is that too much can be done with a small amount of mass. Deterrence and limitation (armored cockpits and active resistance for example) are fine policies.
    3. Lack of support. The simplest form of lack of respect is simply lack of support. The case for federal vs corporate funding of basic science and technology development is very simple: the benefit to society of conducting such work dramatically exceeds the benefit any one agent within society (such as a company) could gain from it. Of late, investment in core science has been an anemic 0.0005 GDP and visa issues hamstring broader technology development.
  3. Confidence This is primarily related to the technology side of science and technology. Many policy decisions are made without confidence in the ability of technologists to adapt. This comes in at least two flavors.
    1. The foreordained solution. Policy often comes in the form “we use approach X to solve problem Y” (some examples are above). This demonstrates an overconfidence by policy makers in there ability to pick the winner, and a lack of confidence in the ability of technologists to solve problems. It also represents an opportunity for large established industries to get huge payoffs at taxpayer expense. The X-prize represents the opposite of this approach, and it has been radically more effective by any reasonable standard.
    2. Confusion about the meaning of wealth. Some people believe that wealth is about what you have. However, for a society it seems much better to measure wealth in terms of what the society can do. Policy makers often forget that science and technology is a capability when it comes time to think of a solution. For example, someone with no confidence in the ability to create and make affordable plugin electric hybrids might think it necessary to conquest for oil.
  4. Stability People can’t program, do science, or invent new things when they are worried about more immediate events. There are several destabilizing trends going on in the US right now which either now or in the future may make it hard to focus away from immediate concerns.
    1. Debt and money supply. The federal debt for the US government is about 3.5 times the federal budget. This is bad for the simple reason that investors buying US treasury bonds aren’t investing in new technology. However, the destabilizing concern is more subtle. Since world war II, the US dollar has become the standard currency for exchange around the world. Since debt by the government creates a temptation by the government to (effectively) print money, the number of dollars in circulation has been rapidly growing. But, a growing number of dollars means that the currency is devaluing, which makes owning dollars undesirable. I don’t know an example of a previous world currency that has ceased to be such, but basic economics says that bad things happen to dollar-based savings if all the dollars flow back into the US. So far, the decline of the dollar has been relatively gradual, but a very disruptive cliff might exist out there somewhere. Policies which increase debt (like cutting taxes and increasing spending) exacerbate this problem. There is no fix once the dollar loses world currency status because confidence can be lost quickly, but not regained.
    2. Health Care. The US is running an experiment to determine how large a fraction of GDP can be devoted to health care. Currently it’s over 15%, in first place, and growing. This is even worse than it sounds, because many comparable countries in Europe (or Japan) have older populations which should generally be more expensive to take care of. In the present situation, because health care is incredibly expensive, losing health insurance (which is typically tied to a job) is potentially catastrophic for any individual.
    3. Wealth Asymmetry. The US has shifted towards a substantially more asymmetric division of wealth since the 1970s. An asymmetric division of wealth is not fundamentally bad—there needs to be room for great success to imply great rewards. However, a casual correlation of science and technology development with the gini coefficient map reveals that a large gini coefficient and substantial science and technology development do not coincide. The problem is that wealth becomes inheritable, and it’s very unlikely that the wealth is inherited by a someone interested in science and technology. Wealth is now scheduled to become perfectly inheritable in 2010 in the US.

I’m sure some of these issues are endemic to many other parts of the world as well, because there are fundamental conceptual difficulties with investing in the unknown instead of the known.