Machine Learning (Theory)


Fall Machine Learning Events

Many Machine Learning related events are coming up this fall.

  1. September 9, abstracts for the New York Machine Learning Symposium are due. Send a 2 page pdf, if interested, and note that we:
    1. widened submissions to be from anybody rather than students.
    2. set aside a larger fraction of time for contributed submissions.
  2. September 15, there is a machine learning meetup, where I’ll be discussing terascale learning at AOL.
  3. September 16, there is a CS&Econ day at New York Academy of Sciences. This is not ML focused, but it’s easy to imagine interest.
  4. September 23 and later NIPS workshop submissions start coming due. As usual, there are too many good ones, so I won’t be able to attend all those that interest me. I do hope some workshop makers consider ICML this coming summer, as we are increasing to a 2 day format for you. Here are a few that interest me:
    1. Big Learning is about dealing with lots of data. Abstracts are due September 30.
    2. The Bayes Bandits workshop. Abstracts are due September 23.
    3. The Personalized Medicine workshop
    4. The Learning Semantics workshop. Abstracts are due September 26.
    5. The ML Relations workshop. Abstracts are due September 30.
    6. The Hierarchical Learning workshop. Challenge submissions are due October 17, and abstracts are due October 21.
    7. The Computational Tradeoffs workshop. Abstracts are due October 17.
    8. The Model Selection workshop. Abstracts are due September 24.
  5. October 16-17 is the Singularity Summit in New York. This is for the AIists and only peripherally about ML.
  6. October 16-21 is a Predictive Analytics World in New York. As machine learning goes industrial, we see industrial-style conferences rapidly developing.
  7. October 21, there is the New York ML Symposium. In addition to what’s there, Chris Wiggins is looking into setting up a session for startups and those interested in them to get to know each other, as last year.
  8. Decembr 16-17 NIPS workshops in Granada, Spain.


The Large Scale Learning Survey Tutorial

Ron Bekkerman initiated an effort to create an edited book on parallel machine learning that Misha and I have been helping with. The breadth of efforts to parallelize machine learning surprised me: I was only aware of a small fraction initially.

This put us in a unique position, with knowledge of a wide array of different efforts, so it is natural to put together a survey tutorial on the subject of parallel learning for KDD, tomorrow. This tutorial is not limited to the book itself however, as several interesting new algorithms have come out since we started inviting chapters.

This tutorial should interest anyone trying to use machine learning on significant quantities of data, anyone interested in developing algorithms for such, and of course who has bragging rights to the fastest learning algorithm on planet earth :-)

(Also note the Modeling with Hadoop tutorial just before ours which deals with one way of trying to speed up learning algorithms. We have almost no overlap.)


Interesting thing at UAI 2011

Tags: Conferences,Papers,Reinforcement jl@ 3:44 pm

I had a chance to attend UAI this year, where several papers interested me, including:

  1. Hoifung Poon and Pedro Domingos Sum-Product Networks: A New Deep Architecture. We’ve already discussed this one, but in a nutshell, they identify a large class of efficiently normalizable distributions and do learning with it.
  2. Yao-Liang Yu and Dale Schuurmans, Rank/norm regularization with closed-form solutions: Application to subspace clustering. This paper is about matrices, and in particular they prove that certain matrices are the solution of matrix optimizations. I’m not matrix inclined enough to fully appreciate this one, but I believe many others may be, and anytime closed form solutions come into play, you get 2 order of magnitude speedups, as they show experimentally.
  3. Laurent Charlin, Richard Zemel and Craig Boutilier, A Framework for Optimizing Paper Matching. This is about what works in matching papers to reviewers, as has been tested at several previous NIPS. We are looking into using this system for ICML 2012.

In addition I wanted to comment on Karl Friston‘s invited talk. At the outset, he made a claim that seems outlandish to me: The way the brain works is to minimize surprise as measured by a probabilistic model. The majority of the talk was not actually about this—instead it was about how probabilistic models can plausibly do things that you might not have thought possible, such as birdsong. Nevertheless, I think several of us in the room ended up stuck on the claim in questions afterward.

My personal belief is that world modeling (probabilistic or not) is a useful subroutine for intelligence, but it could not possibly be the entirety of intelligence. A key reason for this is the bandwidth of our senses—we simply take in too much information to model everything with equal attention. It seems critical for the efficient functioning of intelligence that only things which might plausibly matter are modeled, and only to the degree that matters. In other words, I do not model the precise placement of items on my desk, or even the precise content of my desk, because these details simply do not matter.

This argument can be made in another way. Suppose for the moment that all the brain does is probabilistic modeling. Then, the primary notion of failure to model is “surprise”, which is low probability events occurring. Surprises (stumbles, car wrecks, and other accidents) certainly can be unpleasant, but this could be correct if modeling is a subroutine as well. The clincher is that there are many unpleasant things which are not surprises, including keeping your head under water, fasting, and self-inflicted wounds.

Accounting for the unpleasantness of these events requires more than probabilistic modeling. In other words, it requires rewards, which is why reinforcement learning is important. As a byproduct, rewards also naturally create a focus of attention, addressing the computational efficiency issue. Believing that intelligence is just probabilistic modeling is another example of simple wrong answer.


ICML 2011 and the future

Unfortunately, I ended up sick for much of this ICML. I did manage to catch one interesting paper:

Richard Socher, Cliff Lin, Andrew Y. Ng, and Christopher D. Manning Parsing Natural Scenes and Natural Language with Recursive Neural Networks.

I invited Richard to share his list of interesting papers, so hopefully we’ll hear from him soon. In the meantime, Paul and Hal have posted some lists.

the future

Joelle and I are program chairs for ICML 2012 in Edinburgh, which I previously enjoyed visiting in 2005. This is a huge responsibility, that we hope to accomplish well. A part of this (perhaps the most fun part), is imagining how we can make ICML better. A key and critical constraint is choosing things that can be accomplished. So far we have:

  1. Colocation. The first thing we looked into was potential colocations. We quickly discovered that many other conferences precomitted their location. For the future, getting a colocation with ACL or SIGIR, seems to require more advanced planning. If that can be done, I believe there is substantial interest—I understand there was substantial interest in the joint symposium this year. What we did manage was achieving a colocation with COLT and there is an outside chance that a machine learning summer school will precede the main conference. The colocation with COLT is in both time and space, with COLT organized as (essentially) a separate track in a nearby building. We look forward to organizing a joint invited session or two with the COLT program chairs.
  2. Tutorials. We don’t have anything imaginative here, except for pushing for quality tutorials, probably through a mixture of invitations and a call. There is a small chance we’ll be able to organize a machine learning summer school as a prequel, which would be quite cool, but several things have to break right for this to occur.
  3. Conference. We are considering a few tinkerings with the conference format.
    1. Shifting a conference banquet to be during the workshops, more tightly integrating the workshops.
    2. Having 3 nights of posters (1 per day) rather than 2 nights. This provides more time/poster, and avoids halving talks and posters appear on different days.
    3. Having impromptu sessions in the evening. Two possibilities here are impromptu talks and perhaps a joint open problems session with COLT. I’ve made sure we have rooms available so others can organize other things.
    4. We may go for short presentations (+ a poster) for some papers, depending on how things work out schedulewise. My opinions on this are complex. ICML is traditionally multitrack with all papers having a 25 minute-ish presentation. As a mechanism for research, I believe this is superior to a single track conference of a similar size because:
      1. Typically some talk of potential interest can always be found by participants avoiding the boredom problem which comes up at a single track conference
      2. My experience is that program organizers have a limited ability to foresee which talks are of most interest, commonly creating a misallocation of attention.

      On the other hand, there are clearly limits to the number of tracks that are reasonable, and I feel like ICML (especially with COLT cotimed) is near the upper limit. There are also some papers which have a limited scope of interest, for which a shorter presentation is reasonable.

  4. Workshops. A big change here—we want to experiment with 2 days of workshops rather than 1. There seems to be demand for it, as the number of workshops historically is about 10, enough that it’s easy to imagine people commonly interested in 2 workshops. It’s also the case that NIPS has had to start rejecting a substantial fraction of workshop submissions for space reasons. I am personally a big believer in workshops as a mechanism for further research, so I hope this works out well.
  5. Journal integration. I tend to believe that we should be shifting to a journal format for ICML papers, as per many past discussions. After thinking about this the easiest way seems to be simply piggybacking on existing journals such as JMLR and MLJ by essentially declaring that people could submit there first, and if accepted, and not otherwise presented at a conference, present at ICML. This was considered too large a change, so it is not happening. Nevertheless, it is a possible tweak that I believe should be considered for the future. My best guess is that this would never displace the baseline conference review process, but it would help some papers that don’t naturally fit into a conference format while keeping quality high.
  6. Reviewing. Drawing on plentiful experience with what goes wrong, I think we can create the best reviewing system for conferences. We are still debating exact details here while working through what is possible in different conference systems. Nevertheless, some basic goals are:
    1. Double Blind [routine now] Two identical papers with different authors should have the same chance of success. In terms of reviewing quality, I think double blind makes little difference in the short term, but the public commitment to fair reviewing makes a real difference in the long term.
    2. Author Feedback [routine now] Author feedback makes a difference in only a small minority of decisions, but I believe its effect is larger as (a) reviewer quality improves and (b) reviewer understanding improves. Both of these are silent improvers of quality. Somewhat less routine, we are seeking a mechanism for authors to be able to provide feedback if additional reviews are requested, as I’ve become cautious of the late-breaking highly negative review.
    3. Paper Editing. Geoff Gordon tweaked AIStats this year to allow authors to revise papers during feedback. I think this is helpful, because it encourages authors to fix clarity issues immediately, rather than waiting longer. This helps with some things, but it is not a panacea—authors still have to convince reviewers their paper is worthwhile, and given the way people are first impressions are lasting impressions.
    4. Multisource reviewing. We want all of the initial reviews to be assigned by good yet different mechanisms. In the past, I’ve observed that the source of reviewer assignments can greatly bias the decision outcome, all the way from “accept with minor revisions” to “reject” in the case of a JMLR submission that I had. Our plan at the moment is that one review will be assigned by bidding, one by a primary area chair, and one by a secondary area chair.
    5. No single points of failure. When Bob Williamson and I were PC members for learning theory at NIPS, we each came to a decisions given reviews and then reconciled differences. This made a difference on about 5-10% of decisions, and (I believe) improved overall quality a bit. More generally, I’ve seen instances where an area chair has an unjustifiable dislike for a paper and kills it off, which this mechanism avoids.
    6. Speed. In general, I believe speed and good decision making are antagonistic. Nevertheless, we believe it is important to try to do the reviewing both quickly and well. Doing things quickly implies that we can push the submission deadline back later, providing authors more time to make quality papers. Key elements of doing things well fast are: good organization (that’s all on us), light loads for everyone involved (i.e. not too many papers), crowd sourcing (i.e. most decisions made by area chairs), and some amount of asynchrony. Altogether, we believe at the moment that two weeks can be shaved from our reviewing process.
  7. Website. Traditionally at ICML, every new local organizer was responsible for creating a website. This doesn’t make sense anymore, because substantial work is required there, which can and should be amortized across the years so that the website can evolve to do more for the community. We plant to create a permanent website, based around some combination of and I think this just makes sense.
  8. Publishing. We are thinking about strongly encouraging authors to use arxiv for final submissions. This provides a lasting backing store for ICML papers, as well as a mechanism for revisions. The reality here is that some mistakes get into even final drafts, so a way to revise for the long term is helpful. We are also planning to videotape and make available all talks, although a decision between videolectures and Weyond has not yet been made.

Implementing all the changes above is ambitious, but I believe feasible and that each is individually beneficial and to some extent individually evaluatable. I’d like to hear any thoughts you have on this. It’s also not too late if you have further suggestions of your own.


A paper not at Snowbird

Unfortunately, a scheduling failure meant I missed all of AIStat and most of the learning workshop, otherwise known as Snowbird, when it’s at Snowbird.

At snowbird, the talk on Sum-Product networks by Hoifung Poon stood out to me (Pedro Domingos is a coauthor.). The basic point was that by appropriately constructing networks based on sums and products, the normalization problem in probabilistic models is eliminated, yielding a highly tractable yet flexible representation+learning algorithm. As an algorithm, this is noticeably cleaner than deep belief networks with a claim to being an order of magnitude faster and working better on an image completion task.

Snowbird doesn’t have real papers—just the abstract above. I look forward to seeing the paper. (added: Rodrigo points out the deep learning workshop draft.)


KDD Cup 2011

Yehuda points out KDD-Cup 2011 which Markus and Gideon helped setup. This is a prediction and recommendation contest for music. In addition to being a fun chance to show your expertise, there are cash prizes of $5K/$2K/$1K.


2011 Summer Conference Deadline Season

Tags: Announcements,Conferences jl@ 9:20 pm

Machine learning always welcomes the new year with paper deadlines for summer conferences. This year, we have:

Conference Paper Deadline When/Where Double blind? Author Feedback? Notes
ICML February 1 June 28-July 2, Bellevue, Washington, USA Y Y Weak colocation with ACL
COLT February 11 July 9-July 11, Budapest, Hungary N N colocated with FOCM
KDD February 11/18 August 21-24, San Diego, California, USA N N
UAI March 18 July 14-17, Barcelona, Spain Y N

The larger conferences are on the west coast in the United States, while the smaller ones are in Europe.


NIPS 2010

I enjoyed attending NIPS this year, with several things interesting me. For the conference itself:

  1. Peter Welinder, Steve Branson, Serge Belongie, and Pietro Perona, The Multidimensional Wisdom of Crowds. This paper is about using mechanical turk to get label information, with results superior to a majority vote approach.
  2. David McAllester, Tamir Hazan, and Joseph Keshet Direct Loss Minimization for Structured Prediction. This is about another technique for directly optimizing the loss in structured prediction, with an application to speech recognition.
  3. Mohammad Saberian and Nuno Vasconcelos Boosting Classifier Cascades. This is about an algorithm for simultaneously optimizing loss and computation in a classifier cascade construction. There were several other papers on cascades which are worth looking at if interested.
  4. Alan Fern and Prasad Tadepalli, A Computational Decision Theory for Interactive Assistants. This paper carves out some forms of natural not-MDP problems and shows their RL-style solution is tractable. It’s good to see people moving beyond MDPs, which at this point are both well understood and limited.
  5. Oliver Williams and Frank McSherry Probabilistic Inference and Differential Privacy. This paper is about a natural and relatively unexplored, and potentially dominating approach for achieving differential privacy and learning.

I also attended two workshops—Coarse-To-Fine and LCCC which were a fine combination. The first was about more efficient (and sometimes more effective) methods for learning which start with coarse information and refine, while the second was about parallelization and distribution of learning algorithms. Together, they were about how to learn fast and effective solutions.

The CtF workshop could have been named “Integrating breadth first search and learning”. I was somewhat (I hope not too) pesky, discussing Searn repeatedly during questions, since it seems quite plausible that a good application of Searn would compete with and plausibly improve on results from several of the talks. Eventually, I hope the conventional wisdom shifts to a belief that search and learning must be integrated for efficiency and robustness reasons. The talks in this workshop were uniformly strong in making that case. I was particularly interested in Drew‘s talk on a plausible improvement on Searn.

The level of agreement in approaches at the LCCC workshop was much lower, with people discussing many radically different approaches.

  1. Should data be organized by feature partition or example partition? Fernando points out that features often scale sublinearly in the number of examples, implying that an example partition addresses scale better. However, basic learning theory tells us that if the number of parameters scales sublinearly in the number of examples, then the value of additional samples asymptotes, implying a mismatched solution design. My experience is that a ‘not enough features’ problem can be dealt with by throwing all the missing features you couldn’t properly previously use, for example personalization.
  2. How can we best leverage existing robust distributed filesystem/MapReduce frameworks? There was near unanimity on the belief that MapReduce itself is of limited value for machine learning, but the step forward is unclear. I liked what Markus said: that no one wants to abandon the ideas of robustly storing data and moving small amounts of code to large amounts of data. The best way to leverage this capability to build great algorithms remains unclear to me.
  3. Every speaker was in agreement that their approach was faster, but there was great disagreement about what “fast” meant in an absolute sense. This forced me to think about an absolute measure of (input complexity)/(time) where we see results between 100 features/s and 10*106 features/s being considered “fast” depending on who is speaking. This scale disparity is remarkably extreme. A related detail is that the strength of baseline algorithms varies greatly.

I hope we’ll discover convincing answers to these questions in the near future.


To Vidoelecture or not

Tags: Conferences,Machine Learning jl@ 1:21 pm

(update: cross-posted on CACM)

For the first time in several years, ICML 2010 did not have videolectures attending. Luckily, the tutorial on exploration and learning which Alina and I put together can be viewed, since we also presented at KDD 2010, which included videolecture support.

ICML didn’t cover the cost of a videolecture, because PASCAL didn’t provide a grant for it this year. On the other hand, KDD covered it out of registration costs. The cost of videolectures isn’t cheap. For a workshop the baseline quote we have is 270 euro per hour, plus a similar cost for the cameraman’s travel and accomodation. This can be reduced substantially by having a volunteer with a camera handle the cameraman duties, uploading the video and slides to be processed for a quoted 216 euro per hour.

Youtube is the most predominant free video site with a cost of $0, but it turns out to be a poor alternative. 15 minute upload limits do not match typical talk lengths. Videolectures also have side-by-side synchronized slides & video which allows quick navigation of the videostream and acceptable resolution of typical talk slides. Overall, these benefits are substantial enough that youtube is not presently a serious alternative.

So, if we can’t avoid paying the cost, is it worthwhile? One way to judge this is by comparing how much authors currently spend traveling to a conference and presenting research vs. the size of the audience. In general, costs vary wildly, but for a typical academic international conference, airfare, hotel, and registration are commonly at least $1000 even after scrimping. The sizes of audiences also varies substantially, but something in the 30-100 range is a typical average. For KDD 2010, the average number of views per presentation is 14.6, but this is misleadingly low, as KDD presentations were just put up. A better number is for KDD 2009, where the average view number is presently 74.2. This number is representative with ICML 2009 presently averaging 115.8. We can argue about the relative merits of online vs. in-person viewing, but the order of their value is at least unclear, since in an online system people specifically seek out lectures to view while at the conference itself people are often opportunistic viewers. Valuing these equally, we see that videolectures increases the size of the audience, and (hence) the value to authors by perhaps a factor of 2 for a cost around 1/3 of current presentation costs.

This conclusion is conservative, because a videolecture is almost surely viewed over more than a year, cost of conference attendance are often higher, and the cost in terms of a presenter’s time is not accounted for. Overall, videolecture coverage seems quite worthwhile. Since authors also typically are the attendees of a conference, increasing the registration fees to cover the cost of videolectures seems reasonable. A videolecture is simply a new publishing format.

We can hope that the price will drop over time, as it’s not clear to me that the 216 euros/hour reflects the real costs of Some competition of a similar quality would be the surest way to do that. But in the near future, there are two categories of conferences—those that judge the value of their content above 216 euros/hour, and those that do not. Whether or not a conference has videolecture support substantially impacts its desirability as a place to send papers.


New York Area Machine Learning Events

On Sept 21, there is another machine learning meetup where I’ll be speaking. Although the topic is contextual bandits, I think of it as “the future of machine learning”. In particular, it’s all about how to learn in an interactive environment, such as for ad display, trading, news recommendation, etc…

On Sept 24, abstracts for the New York Machine Learning Symposium are due. This is the largest Machine Learning event in the area, so it’s a great way to have a conversation with other people.

On Oct 22, the NY ML Symposium actually happens. This year, we are expanding the spotlights, and trying to have more time for posters. In addition, we have a strong set of invited speakers: David Blei, Sanjoy Dasgupta, Tommi Jaakkola, and Yann LeCun. After the meeting, a late hackNY related event is planned where students and startups can meet.

I’d also like to point out the related CS/Econ symposium as I have interests there as well.



Tags: Announcements,Conferences jl@ 5:35 pm

Geoff Gordon points out AIStats 2011 in Ft. Lauderdale, Florida. The call for papers is now out, due Nov. 1. The plan is to experiment with the review process to encourage quality in several ways. I expect to submit a paper and would encourage others with good research to do likewise.


KDD 2010

Tags: Conferences,Machine Learning jl@ 6:39 pm

There were several papers that seemed fairly interesting at KDD this year. The ones that caught my attention are:

  1. Xin Jin, Mingyang Zhang, Nan Zhang, and Gautam Das, Versatile Publishing For Privacy Preservation. This paper provides a conservative method for safely determining which data is publishable from any complete source of information (for example, a hospital) such that it does not violate privacy rules in a natural language. It is not differentially private, so no external sources of join information can exist. However, it is a mechanism for publishing data rather than (say) the output of a learning algorithm.
  2. Arik Friedman Assaf Schuster, Data Mining with Differential Privacy. This paper shows how to create effective differentially private decision trees. Progress in differentially private datamining is pretty impressive, as it was defined in 2006.
  3. David Chan, Rong Ge, Ori Gershony, Tim Hesterberg, Diane Lambert, Evaluating Online Ad Campaigns in a Pipeline: Causal Models At Scale This paper is about automated estimation of ad campaign effectiveness. The double robust estimation technique seems intuitively appealing and plausibly greatly enhances effectiveness.
  4. Naoki Abe et al. Optimizing Debt Collections Using Constrained Reinforcement Learning This is an application paper about optimizing the New York State income tax collection agency. As you might expect, there are several cludgy aspects due to working within legal and organizational constraints. They deal with them, and expect to end up making NY state around $108/year. Too bad I live in NY :)
  5. Vikas C Raykar, Balaji Krishnapuram, and Shinpeng Yu Designing Efficient Cascaded Classifiers: Tradeoff between Accuracy and Cost This paper is about a continuization based solution to designing a cost-efficient yet accurate classifier cascade. It’s a step beyond the Viola Jones style boosting with cutouts, but I suspect not yet a final solution.
  6. D. Sculley, Combined Regression and Ranking. There are lots of applications where you want both a correct ordering and an estimated value of each item. This paper shows a simple combined-loss approach to getting both which empirically improves on either metric.

In addition, I enjoyed Konrad Feldman‘s invited talk on Quantcast‘s data and learning systems which sounded pretty slick.

In general, it seems like KDD is substantially maturing as a conference. The work on empirically effective privacy-preserving algorithms and some of the stats-work is ahead of what I’ve seen at other machine learning conferences. Presumably this is due to KDD being closer to the business side of machine learning and hence more aware of what are real problems there. An annoying aspect of KDD as a publishing venue is that they don’t put the papers on the conference website, due to ACM constraints. A substantial compensation is that all talks are scheduled to appear on and, as you can see, most papers can be found on author webpages.

KDD also experimented with crowdvine again this year so people could announce which talks they were interested in and setup meetings. My impression was that it worked a bit less well than last year, partly because it wasn’t pushed as much by the conference organizers. Small changes in the interface might make a big difference—for example, just providing a ranking of papers by interest might make it pretty compelling.


ICML & COLT 2010

The papers which interested me most at ICML and COLT 2010 were:

  1. Thomas Walsh, Kaushik Subramanian, Michael Littman and Carlos Diuk Generalizing Apprenticeship Learning across Hypothesis Classes. This paper formalizes and provides algorithms with guarantees for mixed-mode apprenticeship and traditional reinforcement learning algorithms, allowing RL algorithms that perform better than for either setting alone.
  2. István Szita and Csaba Szepesvári Model-based reinforcement learning with nearly tight exploration complexity bounds. This paper and anotherrepresent the frontier of best-known algorithm for Reinforcement Learning in a Markov Decision Process.
  3. James Martens Deep learning via Hessian-free optimization. About a new not-quite-online second order gradient algorithm for learning deep functional structures. Potentially this is very powerful because while people have often talked about end-to-end learning, it has rarely worked in practice.
  4. Chrisoph Sawade, Niels Landwehr, Steffen Bickel. and Tobias Scheffer Active Risk Estimation. When a test set is not known in advance, the model can be used to safely aid test set evaluation using importance weighting techniques. Relative to the paper, placing a lower bound on p(y|x) is probably important in practice.
  5. H. Brendan McMahan and Matthew Streeter Adaptive Bound Optimization for Online Convex Optimization and the almost-same paper John Duchi, Elad Hazan, and Yoram Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. These papers provide tractable online algorithms with regret guarantees over a family of metrics rather than just euclidean metrics. They look pretty useful in practice.
  6. Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, Giovanni Zappella, Active Learning on Trees and Graphs Various subsets of these authors have other papers about actively learning graph-obeying functions which in total provide a good basis for understanding what’s possible and how to learn.

The program chairs for ICML did a wide-ranging survey over participants. The results seem to suggest that participants generally agree with the current ICML process. I expect there is some amount of anchoring effect going on where participants have an apparent preference for the known status quo, although it’s difficult to judge the degree of that. Some survey results which aren’t of that sort are:

  1. 7.7% of reviewers say author feedback changed their mind. It would be interesting to know for which fraction of accepted papers reviewers had their mind changed, but that isn’t there.
  2. 85.4% of authors don’t know if the reviewers read their response, believe they read and ignored it, or believe they didn’t read it. Authors clearly don’t feel like they are communicating with reviewers.
  3. 58.6% support growing the conference with the largest fraction suggesting poster-only papers.
  4. Other conferences attended by the ICML community in order are NIPS, ECML/PKDD, AAAI, IJCAI, AIStats, UAI, KDD, ICDM, COLT, SIGIR, ECAI, EMNLP, CoNLL. This is pretty different from the standard colocation list for ICML. Many possibilities are precluded by scheduling, but AAAI, IJCAI, UAI, KDD, COLT, SIGIR are all serious possibilities some of which haven’t been used much in the past.

My experience with Mark‘s new paper discussion site is generally positive—having comments emailed to interested parties really helps the discussion. There are a few comments that authors haven’t responded to, so if you are an author you might want to sign up to receive comments.

In addition, I was the workshop chair for ICML&COLT this year. My overall impression was that things went reasonably well, with the exception of internet connectivity at Dan Panorama which was a minidisaster courtesy of a broken per-machine authentication system. One of the things I’m particularly happy about was the Learning to Rank Challenge workshop. I think it would be great if ICML can continue to attract new challenge workshops in the future. If anyone else has comments about the workshops, I’d love to hear them.


2010 ICML discussion site

A substantial difficulty with the 2009 and 2008 ICML discussion system was a communication vacuum, where authors were not informed of comments, and commenters were not informed of responses to their comments without explicit monitoring. Mark Reid has setup a new discussion system for 2010 with the goal of addressing this.

Mark didn’t want to make it to intrusive, so you must opt-in. As an author, find your paper and “Subscribe by email” to the comments. As a commenter, you have the option of providing an email for follow-up notification.


Compassionate Reviewing

Most long conversations between academics seem to converge on the topic of reviewing where almost no one is happy. A basic question is: Should most people be happy?

The case against is straightforward. Anyone who watches the flow of papers realizes that most papers amount to little in the longer term. By it’s nature research is brutal, where the second-best method is worthless, and the second person to discover things typically gets no credit. If you think about this for a moment, it’s very different from most other human endeavors. The second best migrant laborer, construction worker, manager, conductor, quarterback, etc… all can manage quite well. If a reviewer has even a vaguely predictive sense of what’s important in the longer term, then most people submitting papers will be unhappy.

But this argument unravels, in my experience. Perhaps half of reviews are thoughtless or simply wrong with a small part being simply malicious. And yet, I’m sure that most reviewers genuinely believe they can predict what will and will not be useful in the longer term. This disparity is a lack of communication. When academics have conversations about reviewing, the presumption of participants in each conversation is that they all share about the same beliefs about what will be useful, and what will take off. Such conversations rarely go into specifics, because the specifics are boring in particular, technical, and because their is a real chance of disagreement on the specifics themselves.

When double blind reviewing was first being considered for ICML, I remember speaking about the experience in the Crypto community, where in my estimate the reviewing was both fairer and less happy. Many conferences in machine learning have shifted to doubleblind reviewing, and I think we have seen this come to pass here as well. Without double blind reviewing, it is common to have an “in” crowd who everyone respects and whose papers are virtually always accepted. These people are happy, and the rest have little voice. With double blind reviewing, everyone suffers substantial rejections.

We might say “fine, at least it’s fair”, but in my experience there is a real problem. From a viewpoint external to the community, when the reviewing is poor and the viewpoint of people in the community highly contradictory, nothing good happens. Outsiders (i.e. most people) viewing the acrimony choose some other way to solve problems, proposals don’t get funded, and the community itself tends to fracture. For example, in cryptography, TCC (not double blind) has started, presumably because the top theory people got tired of having their papers rejected at Crypto (double blind). From a process-of-research standpoint, this seems suboptimal, as different groups using different methods to solve similar problems are particularly the people who you would prefer talking to each other.

What seems to be lost with double blind reviewing is some amount of compassion, unfairly allocated. In a double blind system, any given paper is plausibly from someone you don’t know, and since most papers go nowhere, plausibly not going anywhere. Consequently, the bias starts “against” for all work, a disadvantage which can be quite difficult to overcome. Some time ago, I discussed how I thought motivation should be the responsibility of the reviewer. Aaron Hertzman strongly disagreed on the grounds that this belief could dead end your career as an author. I’ve come to appreciate his viewpoint to an extent. But, it misses the point slightly—the question of “What is good for the community?” differs from “What is good for the author?” In a healthy community, reviewers will actively understand why a piece of work is or is not important, filling in and extending the motivation as they consider the problem.

So, a question is: How can we get compassionate reviewing? (And in a fair way?) It might help somewhat for reviewers to actively consider, as part of their review, the level and mechanism of impact that a paper may have. Reducing reviewing load is certainly helpful, but it is not sufficient alone, because many people naturally interpret a reduced reviewing load as time to work on other things. And, some mechanisms seem to even harm. For example, the two-phase reviewing process that ICML currently uses might save 0.5 reviews/paper, while guaranteeing that for half of the papers, the deciding review is done hastily with no author feedback, a recipe for mistakes.

What creates a great deal of compassion? Public responsibility helps (witness workshops more interesting than conferences). A natural conversation helps (the current method of single round response tends to be very stilted). And time, of course, helps. What else?


COLT Treasurer is now Phil Long

Tags: Conferences,Funding jl@ 2:14 pm

For about 5 years, I’ve been the treasurer of the Association for Computational Learning, otherwise known as COLT, taking over from John Case before me. A transfer of duties to Phil Long is now about complete. This probably matters to almost no one, but I wanted to describe things a bit for those interested.

The immediate impetus for this decision was unhappiness over reviewing decisions at COLT 2009, one as an author and several as a member of the program committee. I seem to have disagreements fairly often about what is important work, partly because I’m focused on learning theory with practical implications, partly because I define learning theory more broadly than is typical amongst COLT members, and partly because COLT suffers a bit from insider-clique issues. The degree to which these issues come up varies substantially each year so last year is not predictive of this one. And, it’s important to understand that COLT remains healthy with these issues not nearly so bad as they were. Nevertheless, I would like to see them taken more actively into account than I’ve been able to persuade people so far.

After thinking about it for a few days before acting, I decided to go ahead with the transfer for another reason: I’ve been suffering from multitask poisoning. Partly this is Ada, but partly it’s many other things, each of which takes a small bit of my time, in aggregate leaving me disappointing people, myself in particular. The effect of this has been quite obvious in terms of the posting rate on

Fortunately, Phil Long was ready to take up the duties, and he’s well positioned to do so.

Despite the above, I found being treasurer not particularly difficult. The functions of the treasury part of ACL have been

  1. Self-insurance for the conference each year. Prior to the formation of ACL-the-nonprofit (which Bob was instrumental in), COLT used to buy insurance against the possibility that some disaster would strike canceling the conference while leaving the local organizer on the hook for substantial expenses. When I came in, the treasury was a little bit low for this function, and when I left, somewhat too high.
  2. Budget fragmentation avoidance. Local organizers typically have a local account from which they spend for expenses and collect registration fees. Without the ACL, dealing with net positive or negative local accounts from year to year was awkward. With the ACL, it’s easy to square things up at the end of each year.
  3. A stable point of contact for funding related things. COLT is partly sponsored by several big CS-related companies including IBM, Microsoft, and Google. Providing a stable point of contact definitely helps ease this process. This also helps on the publishing side, where Omnipress is the current publisher of proceedings.
  4. Budget advice for local organizers. Somewhat to my surprise, the proper role of the treasurer was typically asking the local organizer to reduce registration fees rather than increase. The essential observation is that local organizers, because they operate out of a local account, tend to be a bit conservative in budget estimates. On the other hand, because ACL has an adequate interest bearing account, we should expect and desire to spend the interest in each typical year. In effect, ACL is naturally in a position to sponsor COLT to a small but nontrivial degree.

After having been treasurer for a little while, I’m convinced that having a nonprofit to back a conference is a good idea easing many difficulties with relatively small effort.


Future Publication Models @ NIPS

Yesterday, there was a discussion about future publication models at NIPS. Yann and Zoubin have specific detailed proposals which I’ll add links to when I get them (Yann’s proposal and Zoubin’s proposal).

What struck me about the discussion is that there are many simultaneous concerns as well as many simultaneous proposals, which makes it difficult to keep all the distinctions straight in a verbal conversation. It also seemed like people were serious enough about this that we may see some real movement. Certainly, my personal experience motivates that as I’ve posted many times about the substantial flaws in our review process, including some very poor personal experiences.

Concerns include the following:

  1. (Several) Reviewers are overloaded, boosting the noise in decision making.
  2. (Yann) A new system should run with as little built-in delay and friction to the process of research as possible.
  3. (Hanna Wallach(updated)) Double-blind review is particularly important for people who are unknown or from an unknown institution.
  4. (Several) But, it’s bad to take double blind so seriously as to disallow publishing on arxiv or personal webpages.
  5. (Yann) And double-blind is bad when it prevents publishing for substantial periods of time. Apparently, this comes up in CVPR.
  6. (Zoubin) Any new system should appear to outsiders as if it’s the old system, or a journal, because it’s already hard enough to justify CS tenure cases to other disciplines.
  7. (Fernando) There shouldn’t be a big change with a complex bureaucracy, but rather a smaller changes which are obviously useful or at least worth experimenting with.

There were other concerns as well, but these are the ones that I remember.

Elements of proposals include:

  1. (Yann) Everything should go to Arxiv or an arxiv-like system first, as per physics or mathematics. This addresses (1), because it delinks dissemination from review, relieving some of the burden of reviewing. It also addresses (2) since with good authors they can immediately begin building on each other’s work. It conflicts with (3), because Arxiv does not support double-blind submission. It does not conflict if we build our own system.
  2. (Fernando) Create a conference coincident journal in which people can publish at any time. VLDB has apparently done this. It can be done smoothly by allowing submission in either conference deadline mode or journal mode. This proposal addresses (1) by reducing peak demand on reviewing. It also addresses (6) above.
  3. (Daphne) Perhaps we should have a system which only reviews papers for correctness, which is not nearly as subjective as for novelty or interestingness. This addresses (1), by eliminating some concerns for the reviewer. It is orthogonal to the double blind debate. In biology, such a journal exists (pointer updated), because delays were becoming absurd and intolerable.
  4. (Yann) There should be multiple publishing entities (people or groups of people) that can bless a paper as interesting. This addresses (1).

There are many other proposal elements (too many for my memory), which hopefully we’ll see in particular proposals. If other people have concrete proposals, now is probably the right time to formalize them.


NIPS workshops

Many of the NIPS workshops have a deadline about now, and the NIPS early registration deadline is Nov. 6. Several interest me:

  1. Adaptive Sensing, Active Learning, and Experimental Design due 10/27.
  2. Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra, due Nov. 6.
  3. Large-Scale Machine Learning: Parallelism and Massive Datasets, due 10/23 (i.e. past)
  4. Analysis and Design of Algorithms for Interactive Machine Learning, due 10/30.

And I’m sure many of the others interest others. Workshops are great as a mechanism for research, so take a look if there is any chance you might be interested.


ALT 2009

Tags: Conferences,Online,Papers jl@ 2:58 pm

I attended ALT (“Algorithmic Learning Theory”) for the first time this year. My impression is ALT = 0.5 COLT, by attendance and also by some more intangible “what do I get from it?” measure. There are many differences which can’t quite be described this way though. The program for ALT seems to be substantially more diverse than COLT, which is both a weakness and a strength.

One paper that might interest people generally is:

Alexey Chernov and Vladimir Vovk, Prediction with Expert Evaluators’ Advice. The basic observation here is that in the online learning with experts setting you can simultaneously compete with several compatible loss functions simultaneously. Restated, debating between competing with log loss and squared loss is a waste of breath, because it’s almost free to compete with them both simultaneously. This might interest anyone who has run into “which loss function?” debates that come up periodically.


Interesting papers at UAICMOLT 2009

Here’s a list of papers that I found interesting at ICML/COLT/UAI in 2009.

  1. Elad Hazan and Comandur Seshadhri Efficient learning algorithms for changing environments at ICML. This paper shows how to adapt learning algorithms that compete with fixed predictors to compete with changing policies. The definition of regret they deal with seems particularly useful in many situation.
  2. Hal Daume, Unsupervised Search-based Structured Prediction at ICML. This paper shows a technique for reducing unsupervised learning to supervised learning which (a) make a fast unsupervised learning algorithm and (b) makes semisupervised learning both easy and highly effective.
  3. There were two papers with similar results on active learning in the KWIK framework for linear regression, both reducing the sample complexity to . One was Nicolo Cesa-Bianchi, Claudio Gentile, and Francesco Orabona Robust Bounds for Classification via Selective Sampling at ICML and the other was Thomas Walsh, Istvan Szita, Carlos Diuk, Michael Littman Exploring compact reinforcement-learning representations with linear regression at UAI. The UAI paper covers application to RL as well.
  4. Ping Li, Improving Compressed Counting at UAI. This paper talks about how to keep track of the moments in a datastream with very little space and computation. I’m not sure I have a use for it yet, but it seems like a cool piece of basic technology.
  5. Mark Reid and Bob Williamson Surrogate Regret Bounds for Proper Losses at ICML. This paper points out that via the integral characterization of proper losses, proper scoring rules can be reduced to binary classification. The results unify and generalize the Probing and Quanting reductions we worked on previously. This paper is also related to Nicolas Lambert‘s work, which is quite thought provoking in terms of specifying what is learnable.
  6. Daniel Hsu, Sham M. Kakade and Tong Zhang. A Spectral Algorithm for Learning Hidden Markov Models COLT. This paper shows that a subset of HMMs can be learned using an SVD-based algorithm.
  7. Samory Kpotufe, Escaping the curse of dimensionality with a tree-based regressor at COLT. This paper shows how to directly applying regression in high dimensional vector spaces and have it succeed anyways because the data is naturally low-dimensional.
  8. Shai Ben-David, David Pal and Shai Shalev-Shwartz. Agnostic Online Learning at COLT. This paper characterizes the ability to learn when an adversary is choosing features in the online setting as the “Littlestone dimension”.
« Newer PostsOlder Posts »

Powered by WordPress