Machine Learning (Theory)

11/26/2011

Giving Thanks

Tags: Funding,Research jl@ 7:40 pm

Thanksgiving is perhaps my favorite holiday, because pausing your life and giving thanks provides a needed moment of perspective.

As a researcher, I am most thankful for my education, without which I could not function. I want to share this, because it provides some sense of how a researcher starts.

  1. My long term memory seems to function particularly well, which makes any education I get is particularly useful.
  2. I am naturally obsessive, which makes me chase down details until I fully understand things. Natural obsessiveness can go wrong, of course, but it’s a great ally when you absolutely must get things right.
  3. My childhood was all in one hometown, which was a conscious sacrifice on the part of my father, implying disruptions from moving around were eliminated. I’m not sure how important this was since travel has it’s own benefits, but it bears thought.
  4. I had several great teachers in grade school, and naturally gravitated towards teachers over classmates, as they seemed more interesting. I particularly remember Mr. Cox, who read Watership Down 10 minutes a day. The frustration of not getting to the ending drove me into reading books on my own, including just about every science fiction book in Lebanon Oregon.
  5. I spent a few summers picking strawberries and blueberries. It’s great motivation to not do that sort of thing for a living.
  6. Lebanon school district was willing to bend the rules for me, so I could skip unnecessary math classes. I ended up a year advanced, taking math from our local community college during senior year in high school.
  7. College applications was a very nervous time, because high quality colleges cost much more than we could reasonably expect to pay. I was very lucky to get into Caltech here. Caltech should not be thought of as a university—instead, it’s a research lab which happens to have a few undergraduate students running around. I understand from Preston that the operating budget is about 4% tuition these days. This showed in the financial aid package, where they basically let me attend for the cost of room&board. Between a few scholarships and plentiful summer research opportunities, I managed to graduate debt free. Caltech was also an exceptional place to study, because rules like “no taking two classes at the same time” were never enforced them. The only limits on what you could learn were your own.
  8. Graduate school was another big step. Here, I think Avrim must have picked out my application to Carnegie Mellon, which was a good fit for me. At the time, I knew I wanted to do research in some sort of ML/AI subject area, but not really what, so the breadth of possibilities at CMU was excellent. In graduate school, your advisor is much more important, and between Avrim and Sebastian, I learned quite a bit. The funding which made this all work out was mostly hidden from me at CMU, but there was surely a strong dependence on NSF and DARPA. Tom Siebel also directly covered my final year as as a Siebel Scholar.
  9. Figuring out what to do next was again a nervous time, but it did work out, first in a summer postdoc with Michael Kearns, then at IBM research as a Herman Goldstine Fellow, then at TTI-Chicago, and now at Yahoo! Research for the last 5 years.

My life is just one anecdote, from which it’s easy to be misled. But trying to abstract the details, it seems like the critical elements for success are a good memory, an interest in getting the details right, motivation, and huge amounts of time to learn and then to do research. Given that many of the steps in this process winnow out large fractions of people, some amount of determination and sheer luck is involved. Does the right person manage to see you as a good possibility?

But mostly I’d like to give thanks for the “huge amounts of time” which in practical terms translates into access to other smart people and funding. In education and research funding is something like oxygen—you really miss it when it’s not there, so Thanksgiving is a good time to remember it.

10/24/2011

2011 ML symposium and the bears

The New York ML symposium was last Friday. Attendance was 268, significantly larger than last year. My impression was that the event mostly still fit the space, although it was crowded. If anyone has suggestions for next year, speak up.

The best student paper award went to Sergiu Goschin for a cool video of how his system learned to play video games (I can’t find the paper online yet). Choosing amongst the submitted talks was pretty difficult this year, as there were many similarly good ones.

By coincidence all the invited talks were (at least potentially) about faster learning algorithms. Stephen Boyd talked about ADMM. Leon Bottou spoke on single pass online learning via averaged SGD. Yoav Freund talked about parameter-free hedging. In Yoav’s case the talk was mostly about a better theoretical learning algorithm, but it has the potential to unlock an exponential computational complexity improvement via oraclization of experts algorithms… but some serious thought needs to go in this direction.

Unrelated, I found quite a bit of truth in Paul’s talking bears and Xtranormal always adds a dash of funny. My impression is that the ML job market has only become hotter since 4 years ago. Anyone who is well trained can find work, with the key limiting factor being “well trained”. In this environment, efforts to make ML more automatic and more easily applied are greatly appreciated. And yes, Yahoo! is still hiring too :)

1/3/2011

Herman Goldstine 2011

Vikas points out the Herman Goldstine Fellowship at IBM. I was a Herman Goldstine Fellow, and benefited from the experience a great deal—that’s where work on learning reductions started. If you can do research independently, it’s recommended. Applications are due January 6.

4/28/2010

CI Fellows program renewed

Tags: CS,Funding jl@ 4:01 pm

Lev Reyzin points out the CI Fellows program is renewed. CI Fellows are essentially NSF funded computer science postdocs for universities and industry research labs. I’ve been lucky and happy to have Lev visit me for a year under last year’s program, so I strongly recommend participating if it suits you.

As with last year, the application timeline is very short, with everything due by May 23.

4/24/2010

COLT Treasurer is now Phil Long

Tags: Conferences,Funding jl@ 2:14 pm

For about 5 years, I’ve been the treasurer of the Association for Computational Learning, otherwise known as COLT, taking over from John Case before me. A transfer of duties to Phil Long is now about complete. This probably matters to almost no one, but I wanted to describe things a bit for those interested.

The immediate impetus for this decision was unhappiness over reviewing decisions at COLT 2009, one as an author and several as a member of the program committee. I seem to have disagreements fairly often about what is important work, partly because I’m focused on learning theory with practical implications, partly because I define learning theory more broadly than is typical amongst COLT members, and partly because COLT suffers a bit from insider-clique issues. The degree to which these issues come up varies substantially each year so last year is not predictive of this one. And, it’s important to understand that COLT remains healthy with these issues not nearly so bad as they were. Nevertheless, I would like to see them taken more actively into account than I’ve been able to persuade people so far.

After thinking about it for a few days before acting, I decided to go ahead with the transfer for another reason: I’ve been suffering from multitask poisoning. Partly this is Ada, but partly it’s many other things, each of which takes a small bit of my time, in aggregate leaving me disappointing people, myself in particular. The effect of this has been quite obvious in terms of the posting rate on hunch.net.

Fortunately, Phil Long was ready to take up the duties, and he’s well positioned to do so.

Despite the above, I found being treasurer not particularly difficult. The functions of the treasury part of ACL have been

  1. Self-insurance for the conference each year. Prior to the formation of ACL-the-nonprofit (which Bob was instrumental in), COLT used to buy insurance against the possibility that some disaster would strike canceling the conference while leaving the local organizer on the hook for substantial expenses. When I came in, the treasury was a little bit low for this function, and when I left, somewhat too high.
  2. Budget fragmentation avoidance. Local organizers typically have a local account from which they spend for expenses and collect registration fees. Without the ACL, dealing with net positive or negative local accounts from year to year was awkward. With the ACL, it’s easy to square things up at the end of each year.
  3. A stable point of contact for funding related things. COLT is partly sponsored by several big CS-related companies including IBM, Microsoft, and Google. Providing a stable point of contact definitely helps ease this process. This also helps on the publishing side, where Omnipress is the current publisher of proceedings.
  4. Budget advice for local organizers. Somewhat to my surprise, the proper role of the treasurer was typically asking the local organizer to reduce registration fees rather than increase. The essential observation is that local organizers, because they operate out of a local account, tend to be a bit conservative in budget estimates. On the other hand, because ACL has an adequate interest bearing account, we should expect and desire to spend the interest in each typical year. In effect, ACL is naturally in a position to sponsor COLT to a small but nontrivial degree.

After having been treasurer for a little while, I’m convinced that having a nonprofit to back a conference is a good idea easing many difficulties with relatively small effort.

« Newer PostsOlder Posts »

Powered by WordPress