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Abstract

Most machindearningalgorithmsarelazy: they
extract from the training set the minimum in-
formationneededo predictits labels. Unfortu-
nately this oftenleadsto modelsthatarenot ro-
bust when featuresare remaoved or obscuredn
future test data. For example, a backpropnet
trainedto steera car typically learnsto recog-
nize the edgesof the road, but doesnot learn
to recognizeother featuressuch as the stripes
paintedon the roadwhich could be usefulwhen
roadedgesdisappeain tunnelsor areobscured
by passingtrucks. The netlearnsthe minimum
necessaryo steeronthetrainingset.In contrast,
humandriving is remarkablyrobust as features
becomenbscuredMotivatedby this, we propose
a framework for robust learningthat biasesin-
ductionto learnmary differentmodelsfrom the
sameinputs. We presenta metaalgorithm for
robustlearningcalledFeatureBoosanddemon-
strateit onseveralproblemausingbackpromets,
k-nearesheighboranddecisiontrees.

1. Motivation

Considera backpropnet learningto steera car In the
ALVINN system(Pomerleau1993)the principal internal
featuredearnedby ALVINN netsdetectthe left andright
edgeof theroad. Typically, ALVINN netsdonotlearnin-
ternalfeatureghatdetectotherroadphenomenshatcould
be useful for steeringsuchas road centerlines roadway
signs,trees,othertraffic, peopleetc. This createsa prob-
lem whentheleft or right edgesof the roadareobstructed
by passingrehiclespraremissingasonbridgesandin tun-
nels.Yethumansteerings remarkablyrobustto thelossof
thesefeaturesHumandriverscanfall backonanumberof
alternatdeaturesasdifferentsubset®f roadfeaturexcome
in andout of view. Backpropnetscanlearnto steerbetter
if they learnto recognizeotherroadfeaturessuchascen-
terlines(Caruanal997).How canwe force backpropnets

to learnto usea variety of roadfeaturesvhenlearningto
steer?

A related problem arisesin health care (Cooperet al.,
1997).Basicinputssuchasage,genderandbloodpressure
areavailablefor mostpatientsbeforethey enterthe hospi-
tal. OthermeasurementuchasRBC counts pxygenation,
and Albumin becomeavailable after patientsare hospital-
ized. As you would expect, modelstrainedto predictpa-
tientrisk from boththe pre andin-hospitalfeaturesusually
outperforrmodeldrainedto predictrisk from only thepre-
hospitalinputs. But thesemodelsperform poorly on pa-
tientsnot yet admittedto the hospitalwhenonemaiginal-
izes over the missing in-hospital features. Models that
useonly the pre-hospitainputsare more accuratedor pa-
tients not yet admittedto the hospitalthan maginalized
modelstrainedon all the features.How canwe forcethe
learningalgorithm to learn modelsthat makebetter pre-
dictionswhensomeinput featuregsuchasthein-hospital
attributes)aremissingfor sometestcases?

If the edgesof the road,or thein-hospitalfeaturesareal-
waysavailable,modeldearnedheusualway performwell.
In the ALVINN andhealthcareproblemsabore, the diffi-
culty ariseswhenfeaturesare missingor obscuredn the
testcases.Boostingalgorithmssuchas AdaBoostareone
wayto makelearnedmnodelsmorerobustto featureobscu-
ration. If the main featuressuchasthe edgesof the road
are obscuredr missingfrom a few training casespoost-
ing placesmoreemphasi®n thesecasedbecausehey are
predictedpoorly. This emphasisforcesthe learning al-
gorithm to useotherfeaturessuchasroad centerlinedor
thesecases. Unfortunately boostinglearnsaboutcenter
lines by strongly emphasizinghe casesthat are missing
road edges.even thoughcenterlinesmay be visible in all
images. Boostingcould learn aboutother featuresbetter
if it usedall of the training datacontainingthosefeatures
to learnaboutthem. How canwe makeboostingtakefull
adwantageof all the redundaninformationin the training
set?

This paperintroducesa generalframevork for induction



calledrobustlearning, which is motivatedby our desireto
modelsituationswherefeaturesnaybe corruptedor miss-
ing in waysnot adequatelyepresenteéh thetraining set.
Guidedby theframeavork, we devise a meta-learninglgo-
rithm calledFeatureBoosthattrainsmodelsto usediffer-
ent subsetof features.Becausehe final predictionfrom
FeatureBoostombineshe predictionsof modelsthat de-
pendon different(oftenoverlapping)subset®f featuresit
is morerobustto missingor obscuredeatures.

We developthe paperasfollows:

1 Presentgeneraframevork for robustlearning.

2 Examinea specializatiorof this framevork that sug-
gestsoneway to improve robustness.

3 Developameta-learninglgorithm(FeatureBoostn-
spiredby this model.

4 TestFeatureBoosbn a variety of learningproblems
andmachindearningalgorithms.

2. A Framework for Robust L earning

Ourbasicgoalis to forceanordinary“base”learningalgo-
rithm to extractall theinformationit canfrom thetraining
data,in orderto learnpredictionrulesthatarerobustto the
possibilityof missingor corruptedeaturesn testcasesTo
makethis moreprecise we begin with atheoreticaimodel
that,while notperfect,is ausefulway of thinkingaboutthe
problem,andmotivatesthealgorithmgivenin Section4.

As in the usualPAC model, we assumehat our training
exampleshave n featuresand are givento us from some
fixeddistribution D overtheinputspace We assumehere
is sometargetconcept we wishto learn,andto dothiswe
have accesso a“base”learningalgorithmthatchoosesy-
pothesefrom somehypothesiglassH . For simplicity, we
will fix somearbitraryerror cutoff ¢ andsaya hypothesis
h € H is"good” if its erroris < ¢, andis “bad” otherwise.

We bggin by formalizing the notion that the training data
containuusefulredundaninformation. Specifically we say
thata setof hypothesed!’ is k-robustif, for ary subsebf
k of then featuresthereis someh € H' thatremaingyood
evenwhenthosek featuresarecorrupted.For thepurposes
of this model,we do not needto pin down preciselywhat
“corrupted”meanssolong as“error” is well-defined,and
for ary hypothesish, its erroris non-decreasings addi-
tional featuresbecomecorrupted. (l.e., error tendsto in-
creaseasmorefeaturedbecomecorrupted.)If h is a good
(low error) hypothesisvhenno featuresare corruptedbut
becomedad (high error) whena subsetS of featuresare
corruptedwe saythatS destoysh.

Givenaccesdo examplesfrom D labeledaccordingto ¢,
thegoalof ouralgorithmwill beto producea k-robustsub-
set H' C H if oneexists. Thatis, insteadof producing
a single hypothesiswe want our algorithmto producea
setof hypothesesuchthat no matterwhat k featuresare

corruptedat leastone of the hypothesess still good! To
achieve our goal, we assumehat our baselearningalgo-
rithm A hasthe propertythatif we feedit labeledexamples
from D with somesubsef featurescorruptedit will then
producea goodh € H (with respecto the subsebf fea-
turescorrupted)f oneexists.

We cansayseveralthingsaboutthis setup.First, thereis a
naturalbrute-forcemethodthatachievesour goal by mak-
ing () callsto A: for eachsetsS of k featuresfeeddata
into A in whichthosek featuresarecorrupted andaddthe
hypothesiproducedy A into H'. If A everfailsto output
a goodhypothesiswe know that # wasnot k-robustand
thereforeno k-robust H' C H exists.

Thebrute-forcealgorithmworksbut is impracticalbecause
the powersetof featuresis exponentialin the numberof
featuresjdeally we wantanalgorithmwhoserunningtime
is polynomialin k. Unfortunatelyif H is “perverse”,this
may not be possible.Considey for instance the casethat
H contains(Z) hypotheseseachof which dependson a
differentsubsef n — k featuresandeachchangedrom
goodto badif evenjust oneof thoseis corrupted.In this
casetheonly k-robustsubsebf H is H itself.

On the other hand, thereis a natural stratgy for “non-
penerse” H which canbe provedto makeonly polynomi-
ally mary callsto A in certainspecialcases.The stratgy
is asfollows:

1 Initialize H' = {}, S ={}.
2 While notdone,do:

1 FindthesmallestetsS of featureghatdestroyall
he H'?

2 Run A onexamplesfrom D in which featuresn
S arecorrupted.andplacethe hypothesifound
into H'. If A fails, thenhaltwith failure.

We canmakeseveral statementaboutthis algorithm.

Theorem 1 Supposeverygoodhypothesi € H hasan
associatedeatuie setS; sud thath is goodif andonly if
at leastonefeatuein S;, remainsuncorrupted.Then,this
algorithm makesat mostk callsto A and runsin linear
time per iteration.

Proof: We startwith S = {} andeachtime anew % is
addedto H', welet S « S|JS,. By assumptionS will
alwaysbe the smallestset of featuresthat destroysall of
H'. Eachiterationincreaseshe sizeof S by atleastl, so
thenumberof iterationsis at mostk.

L Of coursejdeally we would like a singlek-robustrule, per
hapsa weightedvoteamonghypothesei H’ — andin fact, this
is ourgoalin theexperimentakectionof the paper However, this
goal appeardo betrickier to modeltheoretically sowe consider
heretheweakermoalof producinga k-robustset.

2 Algorithmically, thewaywefind S would dependnthekind
of hypothesesve areconsideringbut in the worstcasewe could
usebruteforceto try all S of sizel, thenof size2 andsoon.



Theorem 2 Supposeverygoodhypothesi: € H hasan
associatedeatuie setS;, sud thath is goodif andonly if
at leasttwo featuesin S; remainuncorrupted.Then,the
abovealgorithmmakesat mostO (k?) callsto A.

Proof: Considera graphG with onenodefor eachof the
n featuresjn which thereareinitially no edges.At each
iterationof thealgorithm,putanedgeinto G betweerevery
pair of uncorruptedeaturesn S, (unlessheedgeis there
already) whereh is thenew hypothesigproduced.Notice
thatthesetS producedn step2.1 must,by assumptionbe
avertex cover (asetof verticescoveringall theedges)and
every iterationaddsat leastonenew edgeinto the graph.
Therefore the algorithmis donewhenthereis nolongera
vertex cover of size< k. Thetheoremfollows from the
twin factsthat(a) no nodewill reachdegreegreaterthan
k + 1 (atthatpointit mustbein the setS), and(b) the
sizeof the minimumvertex cover is at mostthesizeof the
maximummatchingin thegraph. |

Thealgorithmwe developin Sectiord canbethoughtof as
a more practicalversionof this stratey, for real dataand
for ourrealgoal of producingasinglerobusthypothesis.

3. A Special Case of Robust Learning

We now considera specializationof the robust learning
frameavork presentedn the precedingsection. In partic-
ular, we wish to motivatethe ideaof usinga majority vote
to boostrobustness.

As in the previous section,assumehere exists someun-
known underlyingdistribution, D, from which m exam-
pleswith n featuresg™ = (21, ..., z,)™ aredravn. These
examplesarelabeledaccordingo anunknowvn targetfunc-
tion,y = ¢(x).

Furtherassumehat ¢ disjoint subsetof the featurescan
predictthelabel:3¢,, . . ., ¢, suchthaty = ¢ (24, ..., 24,)

= ca(®iy41, - - = cq(®i,_,41,---,%n). CO-
training makesthe sameassumptiorwith only 2 feature
sets(Blum & Mitchell, 1998).

The learningalgorithmis presentedvith m labeledexam-
ples,(z, y)™, andaskedo producea hypothesish : X —
Y, usedfor future predictions.Thegoalis to minimizethe
errore(h) = Pp(h(z) # c(z)).

We wish to understanchow the error changeswith alter
ation to the testdistribution. Specifically considera test
distribution in which somepercentagef the disjoint fea-
ture setsare corrupteduniform randomly Corruptionof a
featuresetin an example,z, is accomplishedy picking
a secondexample, z, from D andsubstitutingthe values
of the featuresetfrom z into 2. This approacHeavesthe
mauginal distribution of featureset valuesunchangedy
corruption.

G Lgy,) = ..

Therearetwo extremeso consider ThefirstisanOccams

razormotivatedlearnersuchasa decisiontree, which at-
temptsto find a small setof featuresthat can predictthe
label. In the extreme,if we assume decisiontreefocuses
onaparticularl of the q featuresetsthenwhenk% of the
featuresetsare corrupted the decisiontreeis affectedk%
of thetime. If therearejust two labelsandthe decision
tree outputsa randomvaluewhenit relieson a corrupted
feature thisresultsin errorlinearlyincreasingrom e(h) to
50% ask increase$rom 0% to 100%.

The secondextreme occurswhenthe modelusesall fea-
tures. It is difficult to statehow this will effect accurag

without makingassumptionaboutthe learningalgorithm.
Assumethat a decisiontree is usedon eachdisjoint fea-
turesetwith theresultingtreeoutputspassedhroughama-
jority voting function andthat errorsby onedecisiontree
areindependendf errorsby all otherdecisiontrees.From
k = 50% — 100%, theerrorwill increasdrom e(h) to 50%

ataratedependenbn thevalueof ¢, thenumberof feature
sets. Eachdecisiontreeerror canbe viewed asflipping a
randomcoinwith somebias.If enoughcoinscomeup with

thewrong label, they will overwhelmthe goodpredictors
in the vote. The probability of error is distributedasthe
cumulatie distribution of a binomialtail.

The algorithmfor the secondextremedominateshe first
one,alwaysdoingatleastaswell underary k% featureset
corruptionandoftendoing significantlybetter This moti-
vatesusto createa learningalgorithmusinga mixture of
expertswith eachexpertfocusingon a differentsetof fea-
tures.

4. FeatureBoost

The algorithmwe presentis a variant of boostingwhere
featuresare boostedratherthanexamples. In boosting,a

baselearningalgorithm LEARN is called multiple times.
Eachtime it is presentedvith a differentdistribution over

thetraining examples. After eachstep,this distributionis

alteredto increasethe emphasison “harder” partsof the

space.At the end, the differenthypothesesre combined
into a singlehypothesisBoostingalgorithmsalterthe dis-

tributionby emphasizingarticularttrainingexamples Fea-
tureBoostaltersthe distribution by emphasizingparticular
features.Think of examplesasa matrix whereeachrow is

anexample. Whereboostingemphasizesows (examples)
in thematrix, FeatureBoostmphasizesolumns(features)
in the matrix instead. Similar work with k nearesneigh-
borshasappearedBay, 1998),thoughthe goalsandalgo-

rithmsdiffer considerably

The goal of FeatureBoos{see Table 1) is to searchfor
alternatehypothesessmongstthe features. A distribution
over featuesp; is updatedat eachiterationt by conduct-
ing a sensitvity analysison thefeaturesusedby the model
learnedin the currentiteration. The distribution is used
to increaséhe emphasion unusedeaturesn the next it-
erationin an attemptto producedifferentsub-hypotheses.



Tablel. Pseudocoddescribinghe FeatureBoostlgorithm.

FEATUREBOOST((z, y)™, LEARN, T)

Input: (z,y)™: M exampleswith N features
LEARN: Learningalgorithm
T": Numberof iterations
1 forie{l..N}dow} « +

2 forte{l.T}do
3 P 'wt/Z?;l w;
4 (da, y)™ €4
DEEMPHASIZE((z,y)™, p*,t,T,500, €1, hy_1)
h¢ < LEARN((dz,y)M)
I' « IMPORTANCE((z, y)™ , h, 500)
€0 0Ly | helws) — i |
Bt < maz(e /(1 —¢),0.01)
for n € {1..N}dowltt « wh + It * (€5m — €)

n

© 00 ~N o O

Output: hy (i) = Yo,_, (log 4)he (i) > § 3, log 2

Thisis repeatedandthe sub-hypothesesrecombinednto
a meta-hypothesithat shouldbe morerobust. The intu-
ition behindthis combinationis asfor AdaBoost(Freund
& Schapire1995)(thoughwe areunableto provide strong
theoreticalguaranteesis for AdaBoost). The updatefac-
tor 5, decreasewiith ¢, andin turn increaseshe weight
In(1/4:) associatedavith the final hypothesis.Thus,more
accuraténypothesebare moreinfluenceon thefinal meta-
hypothesis.

We calculatethe importanceof individual featuresby re-

peatedlypicking a randomtraining exampleandassigning
arandomvalueto the featureaccordingto the distribution

of valuesfor thatfeaturein thetrainingset. Theerrorof the
hypothesion this exampleis thencalculated.After mary

iterations(we use500), the changein the averageerror of

the hypothesids detected. Theseerror changesyield an
importancevector over featuresthat is scaledto have en-
triesin (0,1). Pseudocodéor theimportancecalculation
is providedin Table2.

We have experimentedwith several approachedo the
DeemMPHASIZE function for biasingLEARN by the distri-
bution over the featuresp; in Step4 of Table1. Options
rangefrom “hard” (e.g.,removing features}o “soft” (e.g.,
scalingor addingnoiseto individual features).In this pa-
perwe usea“hard” methodfor progressiefeatureremoval
thatis applicableto ary learningalgorithm.

We calculatethe current full maginalization error ¢,
from h;_, beforecalling LEARN. ¢;,, is definedasthe
error when every featureis pickedrandomly This gives
anupperboundontheerrorof h;_;. We thenmaginalize
featuresfrom the training data, weightedby the distribu-

tion over the features,until the maiginalizedperformance

Table2. Pseudocoddescribingmportancecalculationalgorithm
IMPORTANCE((z, y)™ , h, T)
Input: (z,y)™: M exampleswith N features
h: A hypothesidabelingexamples
T Numberof iterations
forn e {1..N}doc, <0

=Y

for n e {1..N}do
fort € {1...T} do
z1 « arandomexamplefrom z™
v h(z1)
x5 « arandomexamplefrom M
z1[n] + za[n]
if h(z1) # vthen
Cp —cp+1
10 forne{l..N}doc, < ¢, /T

© 00 ~NO O~ WN

Output: ¢: the“importance”of eachfeature

of h,_q isworsethan((T" — t) x e;_q1 + ¢ * €¢,) /1. This
processeeksa featuresetwith mamginalizedperformance
worsethane;_ 1, andapproaching,,. In practice we ob-
senethatoccasionallyt is too easyor too hardto doworse
thanthis threshold sowe alsorequirethatat least15% of
thefeaturesareremaved, andatleast10% of thefeatures
remain.The pseudocodéor the DEEMPHASIZE algorithm
andthehelperfunctionMARGINALIZE areprovidedin Ta-
ble 4 andTable3.

Table3. Pseudocoddescribingnaginalizealgorithm
MARGINALIZE((z,y)™ ,p, K, S, h)
Input: (z,y)™: M exampleswith N features
p: A distributionover features
k: numberof featurego maginalizeover
S Total numberof statisticaliterations
h: previoushypothesis
1 ¢,<0

fort € {1...S} do
z; + randomexamplefrom z™
v h(z1)
forn € {1..K}do
f « draw featurewithoutreplacementrom p
x5 + randomexamplefrom z™
21 [f] & @o[f]
if h(z1) # v then
10 €m — €m +1
11 ey < €m/S

© o0 ~NO UL~ WN

Output: ¢,,: themaginalizederror



Table4. Pseudocoddescribingdeemphasizalgorithm

DEEMPHASIZE((z,y)™ ,p,t,T,S, €, h)
Input: (z,y)™: M exampleswith N features

p: A distributionover features
t: iterationnumber
T Totalnumberof featureboositerations
S: Total numberof statisticaliterations
e: previous hypothesigrror
h: previous hypothesis

1 €m — MARGINALIZE((z,y)™,p, N, S, h)

€m €

3 K«0

N

4 whileey, < (T'—1t)*e+txepp, and £ < 0.90
or £ <0.15do
5 K«K+1
€m + MARGINALIZE((z,y)™  p, K, S, h)
7 (dz,y)™ « (z,y)™ with K featuregemaved usingp

(o2}

Output: (dz,y)M et

5. Empirical Results

We now demonstratd-eatureBoostingf artificial neural
nets(ANN), k-nearesheighbor(k NN), anddecisiontrees
(DT). For DT weusedIND (Buntine,1992).For ANN we

usethreelayerbackprometswith 5 hiddenunits,conjugate
gradientdescentandearlystoppingwith hold-outsets.For

KNN we useunweightedEuclideandistancewith k¥ = 2.

We will contrastFeatureBooswith the meta-learningal-

gorithmsM X TURE (asimplemixture of experts)andAD-

ABOOST (Freund& Schapire1995).

Wetesteachmeta-learninglgorithmonthreedomainsthe
UCI Vote domain,a real pneumonigproblem,anda syn-

theticproblemwe createdo demonstrat&eatureBoosting.

TheVotedomainconsistof acongressmasVvotingrecord
on 16votes.Thelabelis the party, democrabr republican,
which the congressmabelongsto. In eachtrial, 100 ex-

ampleswereusedfor training, 335 for testing. The Pneu-
moniadomainusesreal patientdataconsistingof 30 pre-

hospitaland 35 in-hospitalfeatures(Cooperet al., 1997).
Thelabelis therisk of death.In eachtrial 1000examples
were usedfor training, 2000for testing. In the synthetic
domain, THRESHOLD, a thresholdfunctionis dravn uni-

formly from theinterval [25, 75]. Examplesaredravn uni-

formly from [0, 100] andexamplefeaturesareencodedn

several ways: with a Gray code,a “peaks” code,a binary
code, a unary code,andthe value divided by 100. Gray
codeis a similar to binary codeexceptthatonly onefea-
turechangestatime whencountingfrom 0 to 100. Peaks
codeconsistsof 100 featureswith valuescalculatedby a
Gaussiarcenterecn the examplevalue (Caruana,1997).

Unary code (“thermometercode”) outputsasmary 1's as
the examplevalue, thenfills in 0's to reach100 features.
100examplesareusedfor trainingand300for testing.

Our experimentsinvestigatehow robust eachlearningal-
gorithmis to randomuniform featurecorruptionof thetest
data.Foreachcasdn thetestset,arandomn percenpf the
featuresarecorrupted.Thefeaturescorruptedarechoosen
independentljrom caseto case.

The resultsin Figure 1 suggestthat FeatureBoostiomi-

natesAdaBoostand simple mixturesof expertswhenfea-
turesin the testsetare corrupted. Simple mixturesof ex-

pertsimprove robustnesdecausa mixture of expertstyp-

ically usesmorefeatureshan LEARN. Theimprovement
is lessthanFeatureBoosthowever, becausa simplemix-

ture of expertsdoesnot focuslearningto usedifferentsets
of features. The graphsalso suggestthat the benefit of

FeatureBoosts most pronouncedor DT and leastpro-
nouncedor KNN. Thisis expectedbecausdT is biased
to usefew features,whereask NN with unweightedEu-
clideandistanceusesall features.

The syntheticdomain(THRESHOLD) allows usto corrupt
featuresn differentways.Heretheinputis encodedn sev-
eralredundantvays: with a Gray code,a “peaks” code,a
binary code,a unary code,andthe valuedivided by 100.
Thus there are multiple disjoint subsetsof featuresthat
canpredictthetarget. Figure 2 shaws the performanceof
FeatureBoosbn THRESHOLD using decisiontrees. The
graphscomparethe error of (DT) to that of the voting al-
gorithms,andshav how robusteachmethods to corrupted
testdata.However, thetestsetsarenow corruptedwo dif-
ferentways; The left handgraphis asbefore,wheneach
examplehaspercentage: featuresselectedat randomfor
corruption.In theright handgraph,eachexamplehassome
percentage: of the featuresets(e.g. grey code, binary
code,etc) corrupted.This featuresetcorruptionsimulates
clustersof featuregendingto be occludedor corruptedo-
getheraswhenpartsof animageareoccludedprwhenan
event suchasnot beingadmittedto the hospitalcausesan
entiresetof featurego be missing.Both the AdaBoostand
Mixture voting methodsarehit hardby suchgroupednuti-
lation— FeatureBoostyhile weakenedstill demonstrates
its robustness.

6. Discussion

FeatureBoosaddressethe problemof how to benefitfrom
redundangin inputfeaturesMostmachindearningmeth-
ods are lazy and learn “abridged” models. Wherethere
is redundany, a learningalgorithmshouldbe capableof
learningaccuratanodelsusingary of anumberof different
subset®f featuresBut mostdo not. Insteadthey learnthe
simplestmodelsthatareaccurateon the trainingdata. Be-
causesimple modelsoften dependon fewer featuresand
fail to exploit redundang in the input features,they are
not very robustwhenwhensomefeaturesare missing,oc-
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Figurel. Percentimprovementover learningin threedomains(PNEUMONIA, THRESHOLD, and VOTING) for threelearners(k NN,
ANN andDT) andfor threewaysof generatingexperts. Resultsare presentedvith 95% confidencentenals from 100 or moretrial
using20 experts.Thex axisis the percenrandomcorruptionof theindividual features They axisis the percendifferencebetweerthe

errorof LEARN andtheerrorof the othermethods.
cluded,or corrupted.

FeatureBoosis a meta-learninglgorithmthat makesthe
underlying learning algorithm less abridgedby learning
multiple modelsthat use different (possibly overlapping)
setsof features. The ultimate unabridgedearningproce-
durewould beto train separatenodelson the power setof
theinput featuresandcombinethesemodelsweightedby
their estimatedaccurag. This approachs impractical,of
course for problemshaving morethana few attributesas
thepower setis too large.

Despitethe succes®f FeatureBoosbn the testproblems,
therearedifficultiesusingit. The optimal scheduldor bi-
asingfeatureuse dependson the learningalgorithm and
targetfunction. FeatureBoostanbe considered heuristic
searchthroughthe spaceof “ideal” subset®f featuresThe
goalof this searchis to find diversesetsof explanationgor
the outputlabel. If, aswith the syntheticthresholdfunc-
tion, featuresareencodedvith multiple redundantlisjoint
subset®f inputs,we would not wantusethe samefeature
in two differentmodels.In realworld problemghissepara-

tion is rarelysocleanandit maybebestto useoverlapping
subset®f features.

We presentedh “hard” versionof DEEMPHASIZE in Fea-
tureBoost. We can alsoconceve of “soft” versions. All

the learningalgorithmswe examinedallow otherways of
deemphasizinfeatures.

1 For NeuralNets,multiply thevalueof afeatureby it’s
emphasis.While it is theoreticallypossiblethat this
alterationdoesnot changethe learnedhypothesisijn
practicethe hypothesigloesvary.

2 For K nearesheighboruseaweightedinnerproduct.

3 For decisiontrees,multiply theinformationgainof a
featureby that featuresveightbeforecomparingt to
otherfeatures.

Thedifferenceébetweercorruptedeaturesandmissingfea-
turesisimportant.If valuesaremissingatechniquesimilar
to “sleepingexperts(Freundetal., 1997)” maybemoreef-
fective. In this setting,therearemary sub-hypothesethat
takentogethermrecombinedo form amorerobusthypoth-
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(higheris better).

esisusing weightedmajority where only hypothesesvith
no missingvaluesvote. A softerform of this wheresub-
hypothesewsote with strengthproportionalto their confi-
dencemaywork well in realworld settings.

Justasthereareseveral algorithmsfor boostingexamples,
we believe therewill be several algorithmsfor boosting
features. In fact, we can augmentAdaBoostto makeit

morerobust. If we corrupttraining examplesbeforeusing
AdaBoost AdaBoosteventuallyplacesemphasi®n exam-
pleswherethemainfeatureshave beencorruptedandthus
learnsmodelsthat dependon otherfeatures.We find that
AdaBoostingcorruptedtraining setsperformswell when
the corruptionin the trainingsetis identicalto the corrup-
tion in the testset, but can performpoorly whenthe test
setis corrupteddifferently thanthe training set. Com-
bining AdaBoostwith FeatureBoosinay yield the bestof

both methods.Note that while we have begunto develop
a theoreticaframevork for robustlearning,we do not yet
havetheoreticabuaranteefor FeatureBoostomparabléo

thosefor AdaBoost.

7. Related Work

Pomerleaunotedthat ALVINN netslearnedmodelsthat
failed whenunexpectednew featuresarose(guardrails)or
expectedfeaturesvereobscuredqroadedges):

“The appearancer disappearancef irrelevant
featuresandisruptanetwork'sdriving whenthe
network’s training did not demonstrateheir ir-
relevance..While they may obscureor replace
featuresvhichappeaona‘normal’ image there
remainenoughfeaturesin the imageto at least
in theory makedriving using the samenetwork
possible.. Thereasorthatthis type of transitory
disturbanceausedroubleis thateachnetworkis

trainedoverarelatively shortstretchof road(< 2
miles). As a result,during training the network
is not exposedto all possibledriving situations
it might encountemwhendriving autonomously”
(Pomerleau1993).

Clearly our motivation for robustlearningis very similar
to Pomerleats. He devised a methodcalled “structured
noise” thatbearssomeresemblancéo the procesf cor
rupting selectedeatureswith noisein FeatureBoostHis
structurechoisemethodaddedor subtractedoccluded)o-
calized2D regionsin roadimagesin the training setasa
way of biasingthe networkto be morerobustto transitory
featureinclusionandocclusion. Unlike the FeatureBoost
meta-algorithm his goal was to train one networkto be
more robust, not to train multiple modelsto usedifferent
subsetof features. We suspecthat FeatureBoostould
benefitfrom Pomerleals methodof corruptinglocalized
2D regionsin imageswhen applying FeatureBoosto im-
agerecognitionproblems.

Rolustlearningis relatedio the UAV (unspecifiedttribute
value) (Goldmanet al., 1997)and RFA (restrictedfocus-
of-attention)(Ben-Dasid & Dichterman,1998) modelsof
learningstudiedin the Computational.earningTheorylit-
erature. The UAV modelis a querymodelin which both
the training and testdatamay have missingfeaturesand
given a partially-specifiedexample, the goal is to answer
whetheror not all completionsof it have the samelabel
(andto outputthe correctlabelif they do). In RFA learn-
ing, the learningalgorithmis only allowed to examinea
smallnumberof featuresn eachtrainingexample,andits
goalis to producea hypothesighat haslow PAC-styleer
ror over fully specifieddata. Our framevork is similar to
the RFA setupexcepttherolesof trainingandtestdataare
reversedandwe do notassumehatthelearningalgorithm
canchoosewhichfeaturesaremissing.



8. Future Work

Theframavork we presenfor robustlearningdoesnoten-
compasall waysin which input featuresmight differ in
the train andtestdistributions. FeatureBoosassumeshat
this differencecanbe modelledasrandomcorruptionand
eliminationof selectedeatures.While this is an effective
meanof focussinghelearners attentionawayfrom some
featuresjt probablyis not anaccuratemodelof how fea-
turesgetcorruptedn therealworld. For example features
in imagestendto be corruptedin connectedegions. In
medicine proceduresnayreturnresultsfor dozenof mea-
surementsitatime. In bothexamplesfeaturescomeor go
in clumps Thewayin which corruptedfeaturesclumpde-
pendsonthedomain.Ilt maybeusefulto devisespecialized
versionf robustlearningwherethedatacorruptionmodel
betterfits the processethataffect featuresn eachdomain.

An alternateapproachto robust learningthat we are ex-
aminingusesfeatureselectionto train modelson compact
setsof features.It thenremovesthe selectedeaturesand
trainsadditionalmodelsontheremainingfeatures Thisap-
proachmaybettermodeldomainssuchasmedicinewhere
featuredeingmissingis morecommonthanfeaturedeing
corruptedor occluded.

FeatureBoostyhichis basedn onemodelof robustlearn-
ing, haslimitations. Onelimitation is thatthe currentver-
sion of FeatureBoosts restrictedto classificationprob-
lems. This is why we wereunableto testFeatureBoosbn
theautonomougsehiclesteeringproblemthatinitially mo-
tivatedour investigation. We are currently developingan
extensionto FeatureBooghatcanhandleregressiorprob-
lems.

We are not yet ableto provide theoreticalguaranteegor
FeatureBoossimilar to thoseavailable for boostingalgo-
rithmssuchasAdaBoost.Part of thedifficulty stemsfrom
the fact that robust learningis mostusefulwhenthe train
andtestdistribution differ in waysthat may be difficult to
characterizeOneof our goalsis to find restricted(though
possiblylessrealistic)modelsof robustlearningwherewe
will beableto makestrongtheoreticaguarantees.

9. Summary

Most machindearningalgorithmsextractthe minimumin-

formationfrom thetrainingsetthey needto accuratelypre-
dict thelabels.Oncethey learna modelthatperformswell

onthetrainingdata they stoplearning.Thislazinessnakes
the modelsthey learnlessrobust on future testcaseghat
have missingor occludedfeatures. Often thereis redun-
dang in theinputsthatcould have beenexploitedto learn
modelsmorerobustto thelossor corruptionof someinput
featuresA learningalgorithmthatwaslesslazy wouldtry

to learnasmary differentmodelsfrom theavailableinputs
aspossible.

Motivatedby this, we introduceda generalearningframe-
work calledrobust learning. We then presentech meta-
learningalgorithmcalledFeatureBoogthatmakeghe ma-
chinelearningalgorithmit is appliedto morerobust. We
demonstrated-eatureBoostvith three different learning
methods:backpropnets,k-nearesheighbor anddecision
trees.TheresultssuggesFeatureBoostanusethesameth-
odsto learnmodelsthataremorerobustto the lossof im-
portantfeaturedn thetestdata.
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