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Abstract
Mostmachinelearningalgorithmsarelazy: they
extract from the training set the minimum in-
formationneededto predictits labels. Unfortu-
nately, this oftenleadsto modelsthatarenot ro-
bust when featuresare removed or obscuredin
future test data. For example, a backpropnet
trainedto steera car typically learnsto recog-
nize the edgesof the road, but doesnot learn
to recognizeother featuressuch as the stripes
paintedon theroadwhich couldbeusefulwhen
roadedgesdisappearin tunnelsor areobscured
by passingtrucks. The net learnsthe minimum
necessaryto steeron thetrainingset.In contrast,
humandriving is remarkablyrobust as features
becomeobscured.Motivatedby this,wepropose
a framework for robust learningthat biasesin-
ductionto learnmany differentmodelsfrom the
sameinputs. We presenta metaalgorithm for
robustlearningcalledFeatureBoost,anddemon-
strateit onseveralproblemsusingbackpropnets,
k-nearestneighbor, anddecisiontrees.

1. Motivation

Considera backpropnet learningto steera car. In the
ALVINN system(Pomerleau,1993)the principal internal
featureslearnedby ALVINN netsdetectthe left andright
edgesof theroad.Typically, ALVINN netsdonot learnin-
ternalfeaturesthatdetectotherroadphenomenathatcould
be useful for steeringsuchas road centerlines,roadway
signs,trees,othertraffic, people,etc. This createsa prob-
lem whentheleft or right edgesof theroadareobstructed
by passingvehicles,or aremissingasonbridgesandin tun-
nels.Yethumansteeringis remarkablyrobustto thelossof
thesefeatures.Humandriverscanfall backonanumberof
alternatefeaturesasdifferentsubsetsof roadfeaturescome
in andout of view. Backpropnetscanlearnto steerbetter
if they learnto recognizeotherroadfeaturessuchascen-
terlines(Caruana,1997).How canwe forcebackpropnets

to learnto usea varietyof roadfeatureswhenlearningto
steer?

A relatedproblem arisesin health care (Cooperet al.,
1997).Basicinputssuchasage,gender, andbloodpressure
areavailablefor mostpatientsbeforethey enterthehospi-
tal. OthermeasurementssuchasRBCcounts,oxygenation,
andAlbumin becomeavailableafterpatientsarehospital-
ized. As you would expect,modelstrainedto predictpa-
tient risk from boththepreandin-hospitalfeaturesusually
outperformmodelstrainedtopredictrisk fromonly thepre-
hospitalinputs. But thesemodelsperformpoorly on pa-
tientsnot yet admittedto thehospitalwhenonemarginal-
izes over the missing in-hospital features. Models that
useonly the pre-hospitalinputsaremoreaccuratefor pa-
tients not yet admittedto the hospital than marginalized
modelstrainedon all the features.How canwe force the
learningalgorithm to learn modelsthat makebetterpre-
dictionswhensomeinput features(suchasthein-hospital
attributes)aremissingfor sometestcases?

If theedgesof theroad,or the in-hospitalfeaturesareal-
waysavailable,modelslearnedtheusualwayperformwell.
In theALVINN andhealthcareproblemsabove, thediffi-
culty ariseswhenfeaturesaremissingor obscuredin the
testcases.BoostingalgorithmssuchasAdaBoostareone
wayto makelearnedmodelsmorerobustto featureobscu-
ration. If the main featuressuchasthe edgesof the road
areobscuredor missingfrom a few trainingcases,boost-
ing placesmoreemphasison thesecasesbecausethey are
predictedpoorly. This emphasisforces the learningal-
gorithm to useother featuressuchasroadcenterlinesfor
thesecases.Unfortunately, boostinglearnsaboutcenter-
lines by strongly emphasizingthe casesthat are missing
roadedges,even thoughcenterlinesmay be visible in all
images. Boostingcould learnaboutother featuresbetter
if it usedall of the trainingdatacontainingthosefeatures
to learnaboutthem. How canwe makeboostingtakefull
advantageof all the redundantinformationin the training
set?

This paperintroducesa generalframework for induction



calledrobust learning, which is motivatedby ourdesireto
modelsituationswherefeaturesmaybecorruptedor miss-
ing in waysnot adequatelyrepresentedin the trainingset.
Guidedby theframework, wedevisea meta-learningalgo-
rithm calledFeatureBoost,thattrainsmodelsto usediffer-
ent subsetsof features.Becausethe final predictionfrom
FeatureBoostcombinesthe predictionsof modelsthatde-
pendondifferent(oftenoverlapping)subsetsof features,it
is morerobustto missingor obscuredfeatures.

We developthepaperasfollows:

1 Presentageneralframework for robustlearning.

2 Examinea specializationof this framework thatsug-
gestsonewayto improverobustness.

3 Developameta-learningalgorithm(FeatureBoost)in-
spiredby thismodel.

4 TestFeatureBooston a variety of learningproblems
andmachinelearningalgorithms.

2. A Framework for Robust Learning

Ourbasicgoalis to forceanordinary“base”learningalgo-
rithm to extractall theinformationit canfrom thetraining
data,in orderto learnpredictionrulesthatarerobustto the
possibilityof missingor corruptedfeaturesin testcases.To
makethis moreprecise,webegin with a theoreticalmodel
that,while notperfect,is ausefulwayof thinkingaboutthe
problem,andmotivatesthealgorithmgivenin Section4.

As in the usualPAC model, we assumethat our training
exampleshave � featuresandaregiven to us from some
fixeddistribution

�
over theinputspace.Weassumethere

is sometargetconcept� wewishto learn,andto dothiswe
haveaccessto a“base”learningalgorithmthatchooseshy-
pothesesfrom somehypothesisclass� . For simplicity, we
will fix somearbitraryerrorcutoff � andsaya hypothesis��� � is “good” if its erroris �	� , andis “bad” otherwise.

We begin by formalizing the notion that the training data
containsusefulredundantinformation.Specifically, wesay
thata setof hypotheses��
 is � -robust if, for any subsetof� of the � features,thereis some

��� �

 thatremainsgood
evenwhenthose� featuresarecorrupted.For thepurposes
of this model,we do not needto pin down preciselywhat
“corrupted”meanssolong as“error” is well-defined,and
for any hypothesis

�
, its error is non-decreasingas addi-

tional featuresbecomecorrupted. (I.e., error tendsto in-
creaseasmorefeaturesbecomecorrupted.)If

�
is a good

(low error)hypothesiswhenno featuresarecorruptedbut
becomesbad(high error) whena subset� of featuresare
corrupted,wesaythat � destroys

�
.

Givenaccessto examplesfrom
�

labeledaccordingto � ,
thegoalof ouralgorithmwill beto producea � -robustsub-
set �

���� if oneexists. That is, insteadof producing
a singlehypothesis,we want our algorithmto producea
setof hypothesessuchthat no matterwhat � featuresare

corrupted,at leastoneof thehypothesesis still good.� To
achieve our goal, we assumethat our baselearningalgo-
rithm � hasthepropertythatif wefeedit labeledexamples
from

�
with somesubsetof featurescorrupted,it will then

producea good
��� � (with respectto the subsetof fea-

turescorrupted)if oneexists.

We cansayseveral thingsaboutthis setup.First, thereis a
naturalbrute-forcemethodthatachievesour goalby mak-
ing ��� ��� calls to � : for eachset � of � features,feeddata
into � in which those� featuresarecorrupted,andaddthe
hypothesisproducedby � into �

 . If � ever fails to output
a goodhypothesis,we know that � wasnot � -robustand
thereforeno � -robust �

���� exists.

Thebrute-forcealgorithmworksbut is impracticalbecause
the powersetof featuresis exponentialin the numberof
features;ideallywewantanalgorithmwhoserunningtime
is polynomialin � . Unfortunately, if � is “perverse”,this
may not bepossible.Consider, for instance,the casethat� contains ��� ��� hypotheses,eachof which dependson a
differentsubsetof � � � featuresandeachchangesfrom
goodto badif even just oneof thoseis corrupted.In this
case,theonly � -robustsubsetof � is � itself.

On the other hand, there is a natural strategy for “non-
perverse” � whichcanbeprovedto makeonly polynomi-
ally many calls to � in certainspecialcases.Thestrategy
is asfollows:

1 Initialize �

"!$#&% , �'!$#&% .
2 While notdone,do:

1 Findthesmallestset � of featuresthatdestroyall��� �

 .(
2 Run � onexamplesfrom

�
in which featuresin� arecorrupted,andplacethehypothesisfound

into �

 . If � fails, thenhalt with failure.

We canmakeseveralstatementsaboutthisalgorithm.

Theorem 1 Supposeeverygoodhypothesis
�
� � hasan

associatedfeature set �*) such that
�

is goodif andonly if
at leastonefeature in � ) remainsuncorrupted.Then,this
algorithm makesat most � calls to � and runs in linear
timeper iteration.

Proof: We startwith �+!,#-% andeachtime a new
�

is
addedto �

 , we let �/.0�213� ) . By assumption,� will
alwaysbe the smallestsetof featuresthat destroysall of��
 . Eachiterationincreasesthesizeof � by at least1, so
thenumberof iterationsis at most � .4

Of course,ideally we would like a single 5 -robust rule, per-
hapsaweightedvoteamonghypothesesin 627 — andin fact,this
is ourgoalin theexperimentalsectionof thepaper. However, this
goalappearsto betrickier to modeltheoretically, sowe consider
heretheweakergoalof producinga 5 -robustset.8

Algorithmically, thewaywefind 9 woulddependonthekind
of hypothesesweareconsidering,but in theworstcasewe could
usebruteforceto try all 9 of size1, thenof size2 andsoon.



Theorem 2 Supposeeverygoodhypothesis
�
� � hasan

associatedfeature set �*) such that
�

is goodif andonly if
at leasttwo featuresin � ) remainuncorrupted.Then,the
abovealgorithmmakesat most:2;��<(�= calls to � .

Proof: Considera graph > with onenodefor eachof the� features,in which thereare initially no edges.At each
iterationof thealgorithm,putanedgeinto > betweenevery
pairof uncorruptedfeaturesin � ) (unlesstheedgeis there
already),where

�
is thenew hypothesisproduced.Notice

thattheset � producedin step2.1must,by assumption,be
avertex cover (asetof verticescoveringall theedges),and
every iterationaddsat leastonenew edgeinto the graph.
Therefore,thealgorithmis donewhenthereis no longera
vertex cover of size �?� . The theoremfollows from the
twin factsthat (a) no nodewill reachdegreegreaterthan��@BA (at that point it mustbe in the set � ), and (b) the
sizeof theminimumvertex cover is at mostthesizeof the
maximummatchingin thegraph.

Thealgorithmwedevelopin Section4 canbethoughtof as
a morepracticalversionof this strategy, for real dataand
for our realgoalof producingasinglerobusthypothesis.

3. A Special Case of Robust Learning

We now considera specializationof the robust learning
framework presentedin the precedingsection. In partic-
ular, we wish to motivatetheideaof usinga majority vote
to boostrobustness.

As in the previous section,assumethereexists someun-
known underlyingdistribution,

�
, from which C exam-

pleswith � features,D<EF!G;�D �IH�JKJKJLH D � =ME aredrawn. These
examplesarelabeledaccordingto anunknown targetfunc-
tion, NO!/��;�DP= .
Furtherassumethat Q disjoint subsetsof the featurescan
predictthelabel: RS� � H�JTJ�JUH �UV suchthat NW!X� � ;�D � HTJ�JTJUH D<Y�Z[=!\� ( ;�D Y Z^] ��HTJ�J�J_H D Ya` =b! J�JTJ !+� V ;�D Ydcfe Z^] ��H�JTJ�JUH D � = . Co-
training makesthe sameassumptionwith only 2 feature
sets(Blum & Mitchell, 1998).

Thelearningalgorithmis presentedwith C labeledexam-
ples, ;�D H N-=gE , andaskedto producea hypothesis,

� h�ikjl
, usedfor futurepredictions.Thegoal is to minimizethe

error m&; � =n!porq�; � ;�DP=Ws!p�t;�DP=[= .
We wish to understandhow the error changeswith alter-
ation to the test distribution. Specifically, considera test
distribution in which somepercentageof the disjoint fea-
turesetsarecorrupteduniform randomly. Corruptionof a
featureset in an example, D , is accomplishedby picking
a secondexample, u , from

�
andsubstitutingthe values

of the featuresetfrom u into D . This approachleavesthe
marginal distribution of featureset valuesunchangedby
corruption.

Therearetwo extremesto consider. Thefirst is anOccam’s

razormotivatedlearnersuchasa decisiontree,which at-
temptsto find a small setof featuresthat canpredict the
label. In theextreme,if we assumea decisiontreefocuses
ona particular A of the Q featuresets,thenwhen �<v of the
featuresetsarecorrupted,thedecisiontreeis affected �<v
of the time. If thereare just two labelsand the decision
treeoutputsa randomvaluewhenit relieson a corrupted
feature,thisresultsin errorlinearly increasingfrom m&; � = tow-x v as � increasesfrom

x v to A x&x v .

The secondextremeoccurswhenthe modelusesall fea-
tures. It is difficult to statehow this will effect accuracy
without makingassumptionsaboutthelearningalgorithm.
Assumethat a decisiontree is usedon eachdisjoint fea-
turesetwith theresultingtreeoutputspassedthroughama-
jority voting function andthat errorsby onedecisiontree
areindependentof errorsby all otherdecisiontrees.From�O! w&x v � A x&x v , theerrorwill increasefrom m&; � = to w&x v
ataratedependenton thevalueof Q , thenumberof feature
sets. Eachdecisiontreeerror canbeviewedasflipping a
randomcoinwith somebias.If enoughcoinscomeupwith
the wrong label, they will overwhelmthe goodpredictors
in the vote. The probability of error is distributedas the
cumulativedistributionof a binomialtail.

The algorithmfor the secondextremedominatesthe first
one,alwaysdoingat leastaswell underany �<v featureset
corruptionandoftendoingsignificantlybetter. This moti-
vatesus to createa learningalgorithmusinga mixtureof
expertswith eachexpert focusingona differentsetof fea-
tures.

4. FeatureBoost

The algorithmwe presentis a variantof boostingwhere
featuresareboostedratherthanexamples. In boosting,a
baselearningalgorithm LEARN is called multiple times.
Eachtime it is presentedwith a differentdistribution over
the trainingexamples.After eachstep,this distribution is
alteredto increasethe emphasison “harder” partsof the
space.At the end,the differenthypothesesarecombined
into a singlehypothesis.Boostingalgorithmsalterthedis-
tributionby emphasizingparticulartrainingexamples.Fea-
tureBoostaltersthedistributionby emphasizingparticular
features.Think of examplesasa matrixwhereeachrow is
anexample.Whereboostingemphasizesrows (examples)
in thematrix,FeatureBoostemphasizescolumns(features)
in the matrix instead.Similar work with k nearestneigh-
borshasappeared(Bay, 1998),thoughthegoalsandalgo-
rithmsdiffer considerably.

The goal of FeatureBoost(seeTable 1) is to searchfor
alternatehypothesesamongstthe features.A distribution
over features y<z is updatedat eachiteration { by conduct-
ing a sensitivity analysison thefeaturesusedby themodel
learnedin the current iteration. The distribution is used
to increasetheemphasison unusedfeaturesin thenext it-
erationin anattemptto producedifferentsub-hypotheses.



Table1. PseudocodedescribingtheFeatureBoostalgorithm.

FEATUREBOOST ;[;�D H N&=M| H LEARN H[} =
Input: ;�D H N&=M| : ~ exampleswith � features

LEARN: Learningalgorithm

} : Numberof iterations
1 for � � #�A JKJLJ ��% do �b�Y . ��
2 for { � #�A JKJKJ } % do
3 y z .�� zg�&� �Yd� � � zY
4 ;���D H N&=M| H �f� E .

DEEMPHASIZE ;[;�D H N&=g| H y z H { Hf}�H w-x&x H �fzg� �_H � zg� � =
5

� z . LEARN ;f;���D H N-=g|�=
6 � z . IMPORTANCE ;f;�D H N-=g| H � z H w&x-x =
7 �[z�. � |Yd� ���

� z�;�D Y = � N Y �
8 � z .�C���D�;�� z � ;[A � � z = H x J x A�=
9 for � � #�A JLJKJ ��% do � z�] �� .�� z� + � z�O� ;�� � E � �fz[=

Output:
� �P;���=�! �	�z � � ;��K�&� ���  =

� z ;���=¢¡ �( ���z � � �K�&� ��� 
This is repeated,andthesub-hypothesesarecombinedinto
a meta-hypothesisthat shouldbe morerobust. The intu-
ition behindthis combinationis as for AdaBoost(Freund
& Schapire,1995)(thoughweareunableto providestrong
theoreticalguaranteesas for AdaBoost). The updatefac-
tor �Sz decreaseswith �[z , andin turn increasesthe weight�K£�;fA � �<z^= associatedwith thefinal hypothesis.Thus,more
accuratehypotheseshave moreinfluenceon thefinal meta-
hypothesis.

We calculatethe importanceof individual featuresby re-
peatedlypicking a randomtrainingexampleandassigning
a randomvalueto the featureaccordingto thedistribution
of valuesfor thatfeaturein thetrainingset.Theerrorof the
hypothesison this exampleis thencalculated.After many
iterations(we use

w&x-x
), thechangein theaverageerrorof

the hypothesisis detected.Theseerror changesyield an
importancevectorover featuresthat is scaledto have en-
tries in ; x H A�= . Pseudocodefor the importancecalculation
is providedin Table2.

We have experimentedwith several approachesto the
DEEMPHASIZE function for biasingLEARN by the distri-
bution over the featuresy<z in Step4 of Table1. Options
rangefrom “hard” (e.g.,removing features)to “soft” (e.g.,
scalingor addingnoiseto individual features).In this pa-
perweusea“hard” methodfor progressivefeatureremoval
thatis applicableto any learningalgorithm.

We calculatethe current full marginalization error �f� E
from

� zM� � beforecalling LEARN. �f� E is definedas the
error whenevery featureis picked randomly. This gives
anupperboundon theerrorof

� zg� � . We thenmarginalize
featuresfrom the training data,weightedby the distribu-
tion over the features,until the marginalizedperformance

Table2. Pseudocodedescribingimportancecalculationalgorithm

IMPORTANCE ;[;�D H N&=g| H � Hf} =
Input: ;�D H N&=M| : ~ exampleswith � features�

: A hypothesislabelingexamples

} : Numberof iterations
1 for � � #�A JKJKJ ��% do � � . x
2 for � � #�A JKJKJ ��% do
3 for { � #�A JKJLJ } % do
4 D � . a randomexamplefrom DS|
5 ¤¥. � ;�D � =
6 D ( . a randomexamplefrom DS|
7 D �T¦ �S§ .?D (&¦ �S§
8 if

� ;�D � =¨s!F¤ then
9 � � .�� � @/A

10 for � � #�A JKJKJ ��% do � � .©� � � }
Output: � : the“importance”of eachfeature

of
� zM� � is worsethan ;[; } � {_= � � zM� � @ª{ � �f� E = � } . This

processseeksa featuresetwith marginalizedperformance
worsethan �fzg� � , andapproaching� � E . In practice,weob-
servethatoccasionallyit is tooeasyor toohardto doworse
thanthis threshold,sowealsorequirethatat least15% of
thefeaturesareremoved,andat least10% of the features
remain.Thepseudocodefor theDEEMPHASIZE algorithm
andthehelperfunctionMARGINALIZE areprovidedin Ta-
ble4 andTable3.

Table3. Pseudocodedescribingmarginalizealgorithm

MARGINALIZE ;[;�D H N&=g| H y HU«�H � H � =
Input: ;�D H N&=M| : ~ exampleswith � featuresy : A distributionover features� : numberof featuresto marginalizeover� : Total numberof statisticaliterations�

: previoushypothesis
1 � E . x
2 for { � #�A JKJKJ �n% do
3 D � . randomexamplefrom D<|
4 ¤�. � ;�D � =
5 for � � #�A JKJLJ¬« % do
6 ­�. draw featurewithout replacementfrom y
7 D ( . randomexamplefrom DS|
8 D � ¦ ­ § .�D ( ¦ ­ §
9 if

� ;�D � =bs!/¤ then
10 � E .�� E @®A
11 � E .?� E � �

Output: � E : themarginalizederror



Table4. Pseudocodedescribingdeemphasizealgorithm

DEEMPHASIZE ;f;�D H N-=g| H y H { Hf}�H � H � H � =
Input: ;�D H N&=M| : ~ exampleswith � featuresy : A distributionover features{ : iterationnumber

} : Totalnumberof featureboostiterations� : Total numberof statisticaliterations� : previoushypothesiserror�
: previoushypothesis

1 � � E . MARGINALIZE ;f;�D H N-=g| H y H � H � H � =
2 � E .��
3 « . x
4 while � E°¯ ; } � {_= � ��@ª{ � � � E and ±� ¯ x J¬² x

or ±� ¯ x J A w do
5 « . « @/A
6 � E . MARGINALIZE ;[;�D H N&=M| H y H_« H � H � =
7 ;���D H N&=M|³.´;�D H N&=M| with « featuresremovedusingy

Output: ;���D H N-=g| H � � E
5. Empirical Results

We now demonstrateFeatureBoostingof artificial neural
nets(ANN), k-nearestneighbor(KNN), anddecisiontrees
(DT). For DT weusedIND (Buntine,1992).For ANN we
usethreelayerbackpropnetswith 5 hiddenunits,conjugate
gradientdescent,andearlystoppingwith hold-outsets.For
KNN we useunweightedEuclideandistancewith �µ!·¶ .
We will contrastFeatureBoostwith the meta-learningal-
gorithmsM IXTURE (asimplemixtureof experts)andAD-
ABOOST (Freund& Schapire,1995).

Wetesteachmeta-learningalgorithmonthreedomains:the
UCI Vote domain,a real pneumoniaproblem,anda syn-
theticproblemwecreatedto demonstrateFeatureBoosting.
TheVotedomainconsistsof acongressman’svotingrecord
on16votes.Thelabelis theparty, democrator republican,
which the congressmanbelongsto. In eachtrial, 100 ex-
ampleswereusedfor training,335 for testing.ThePneu-
moniadomainusesrealpatientdataconsistingof 30 pre-
hospitaland35 in-hospitalfeatures(Cooperet al., 1997).
The label is therisk of death.In eachtrial 1000examples
wereusedfor training, 2000for testing. In the synthetic
domain,THRESHOLD, a thresholdfunction is drawn uni-
formly from theinterval ¦ ¶ w H_¸ w § . Examplesaredrawn uni-
formly from ¦ x H A x&x § andexamplefeaturesareencodedin
several ways: with a Graycode,a “peaks”code,a binary
code,a unarycode,and the valuedivided by A x&x . Gray
codeis a similar to binary codeexcept thatonly onefea-
turechangesata timewhencountingfrom

x
to A x&x . Peaks

codeconsistsof A x&x featureswith valuescalculatedby a
Gaussiancenteredon the examplevalue(Caruana,1997).

Unary code(“thermometercode”) outputsasmany A ’s as
the examplevalue, thenfills in

x
’s to reach100 features.

100examplesareusedfor trainingand300for testing.

Our experimentsinvestigatehow robust eachlearningal-
gorithmis to randomuniformfeaturecorruptionof thetest
data.For eachcasein thetestset,arandom� percentof the
featuresarecorrupted.Thefeaturescorruptedarechoosen
independentlyfrom caseto case.

The resultsin Figure 1 suggestthat FeatureBoostdomi-
natesAdaBoostandsimplemixturesof expertswhenfea-
turesin the testsetarecorrupted.Simplemixturesof ex-
pertsimprove robustnessbecausea mixtureof expertstyp-
ically usesmorefeaturesthanLEARN. The improvement
is lessthanFeatureBoost,however, becausea simplemix-
tureof expertsdoesnot focuslearningto usedifferentsets
of features. The graphsalso suggestthat the benefitof
FeatureBoostis most pronouncedfor DT and leastpro-
nouncedfor KNN. This is expectedbecauseDT is biased
to usefew features,whereasKNN with unweightedEu-
clideandistanceusesall features.

The syntheticdomain(THRESHOLD) allows us to corrupt
featuresin differentways.Heretheinputis encodedin sev-
eral redundantways: with a Graycode,a “peaks”code,a
binary code,a unarycode,andthe valuedivided by A x&x .
Thus there are multiple disjoint subsetsof featuresthat
canpredictthe target. Figure2 shows theperformanceof
FeatureBooston THRESHOLD using decisiontrees. The
graphscomparetheerror of (DT) to thatof thevoting al-
gorithms,andshow how robusteachmethodis to corrupted
testdata.However, thetestsetsarenow corruptedtwo dif-
ferentways;The left handgraphis asbefore,wheneach
examplehaspercentage� featuresselectedat randomfor
corruption.In theright handgraph,eachexamplehassome
percentage� of the featuresets(e.g. grey code,binary
code,etc)corrupted.This featuresetcorruptionsimulates
clustersof featurestendingto beoccludedor corruptedto-
gether, aswhenpartsof animageareoccluded,or whenan
event suchasnot beingadmittedto thehospitalcausesan
entiresetof featuresto bemissing.Both theAdaBoostand
Mixture votingmethodsarehit hardby suchgroupedmuti-
lation— FeatureBoost,while weakened,still demonstrates
its robustness.

6. Discussion

FeatureBoostaddressestheproblemof how to benefitfrom
redundancy in inputfeatures.Mostmachinelearningmeth-
ods are lazy and learn “abridged” models. Wherethere
is redundancy, a learningalgorithmshouldbe capableof
learningaccuratemodelsusingany of anumberof different
subsetsof features.But mostdonot. Instead,they learnthe
simplestmodelsthatareaccurateon thetrainingdata.Be-
causesimplemodelsoften dependon fewer features,and
fail to exploit redundancy in the input features,they are
not very robustwhenwhensomefeaturesaremissing,oc-
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Figure1. Percentimprovementover learningin threedomains(PNEUMONIA, THRESHOLD, and VOTING) for threelearners(KNN,
ANN andDT) andfor threewaysof generatingexperts. Resultsarepresentedwith 95%confidenceintervals from 100or moretrial
using20experts.Thex axisis thepercentrandomcorruptionof theindividual features.They axisis thepercentdifferencebetweenthe
errorof LEARN andtheerrorof theothermethods.

cluded,or corrupted.

FeatureBoostis a meta-learningalgorithmthat makesthe
underlying learningalgorithm less abridgedby learning
multiple modelsthat usedifferent(possiblyoverlapping)
setsof features.The ultimateunabridgedlearningproce-
durewouldbeto train separatemodelson thepower setof
the input features,andcombinethesemodelsweightedby
their estimatedaccuracy. This approachis impractical,of
course,for problemshaving morethana few attributesas
thepowersetis too large.

Despitethesuccessof FeatureBooston the testproblems,
therearedifficultiesusingit. Theoptimalschedulefor bi-
asingfeatureusedependson the learningalgorithm and
targetfunction.FeatureBoostcanbeconsideredaheuristic
searchthroughthespaceof “ideal” subsetsof features.The
goalof thissearchis to find diversesetsof explanationsfor
the output label. If, aswith the syntheticthresholdfunc-
tion, featuresareencodedwith multiple redundantdisjoint
subsetsof inputs,we would not wantusethesamefeature
in twodifferentmodels.In realworldproblemsthissepara-

tion is rarelysocleanandit maybebestto useoverlapping
subsetsof features.

We presenteda “hard” versionof DEEMPHASIZE in Fea-
tureBoost. We can alsoconceive of “soft” versions. All
the learningalgorithmswe examinedallow otherwaysof
deemphasizingfeatures.

1 For NeuralNets,multiply thevalueof a featureby it’ s
emphasis.While it is theoreticallypossiblethat this
alterationdoesnot changethe learnedhypothesis,in
practicethehypothesisdoesvary.

2 For K nearestneighbor, usea weightedinnerproduct.
3 For decisiontrees,multiply the informationgainof a

featureby that featuresweightbeforecomparingit to
otherfeatures.

Thedifferencebetweencorruptedfeaturesandmissingfea-
turesis important.If valuesaremissing,atechniquesimilar
to “sleepingexperts(Freundetal., 1997)”maybemoreef-
fective. In this setting,therearemany sub-hypothesesthat
takentogetherarecombinedto form amorerobusthypoth-
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Figure2. Theimprovementfrom boostingDT by FeatureBoost,MixtureModels,andAdaBoostonTHRESHOLD. Ontheleft, individual
featuresarerandomlycorrupted.On theright, corruptionhappensto entiresetsof features.Resultsarepresentedwith 95%confidence
intervalsfrom 100trialsusing20experts.They axisis thepercentdifferencebetweentheerrorof LEARN andtheerrorof othermethods
(higheris better).

esisusingweightedmajority whereonly hypotheseswith
no missingvaluesvote. A softerform of this wheresub-
hypothesesvote with strengthproportionalto their confi-
dencemaywork well in realworld settings.

Justasthereareseveralalgorithmsfor boostingexamples,
we believe therewill be several algorithmsfor boosting
features. In fact, we can augmentAdaBoostto makeit
morerobust. If wecorrupttraining examplesbeforeusing
AdaBoost,AdaBoosteventuallyplacesemphasisonexam-
pleswherethemainfeatureshave beencorrupted,andthus
learnsmodelsthatdependon otherfeatures.We find that
AdaBoostingcorruptedtraining setsperformswell when
thecorruptionin the trainingsetis identicalto thecorrup-
tion in the testset,but can performpoorly when the test
set is corrupteddifferently than the training set. Com-
bining AdaBoostwith FeatureBoostmayyield thebestof
both methods.Note that while we have begun to develop
a theoreticalframework for robust learning,we do not yet
havetheoreticalguaranteesfor FeatureBoostcomparableto
thosefor AdaBoost.

7. Related Work

Pomerleaunotedthat ALVINN netslearnedmodelsthat
failed whenunexpectednew featuresarose(guardrails)or
expectedfeatureswereobscured(roadedges):

“The appearanceor disappearanceof irrelevant
featurescandisruptanetwork’sdrivingwhenthe
network’s training did not demonstratetheir ir-
relevance.. .While they may obscureor replace
featureswhichappearona ‘normal’ image,there
remainenoughfeaturesin the imageto at least
in theorymakedriving using the samenetwork
possible.. .Thereasonthatthis typeof transitory
disturbancecausestroubleis thateachnetworkis

trainedoverarelativelyshortstretchof road( ¯ ¶
miles). As a result,during training the network
is not exposedto all possibledriving situations
it might encounterwhendriving autonomously”
(Pomerleau,1993).

Clearly our motivation for robust learningis very similar
to Pomerleau’s. He devised a methodcalled “structured
noise” thatbearssomeresemblanceto theprocessof cor-
rupting selectedfeatureswith noisein FeatureBoost.His
structurednoisemethodaddedor subtracted(occluded)lo-
calized2D regionsin roadimagesin the training setasa
way of biasingthenetworkto bemorerobustto transitory
featureinclusionandocclusion. Unlike the FeatureBoost
meta-algorithm,his goal was to train one network to be
morerobust, not to train multiple modelsto usedifferent
subsetsof features. We suspectthat FeatureBoostcould
benefitfrom Pomerleau’s methodof corruptinglocalized
2D regionsin imageswhenapplyingFeatureBoostto im-
agerecognitionproblems.

Robustlearningis relatedto theUAV (unspecifiedattribute
value)(Goldmanet al., 1997)andRFA (restrictedfocus-
of-attention)(Ben-David & Dichterman,1998)modelsof
learningstudiedin theComputationalLearningTheorylit-
erature.The UAV model is a querymodel in which both
the training and testdatamay have missingfeatures,and
given a partially-specifiedexample,the goal is to answer
whetheror not all completionsof it have the samelabel
(andto outputthecorrectlabel if they do). In RFA learn-
ing, the learningalgorithm is only allowed to examinea
smallnumberof featuresin eachtrainingexample,andits
goal is to producea hypothesisthathaslow PAC-styleer-
ror over fully specifieddata. Our framework is similar to
theRFA setup,excepttherolesof trainingandtestdataare
reversed,andwedonotassumethatthelearningalgorithm
canchoosewhichfeaturesaremissing.



8. Future Work

Theframework wepresentfor robustlearningdoesnoten-
compassall ways in which input featuresmight differ in
the train andtestdistributions. FeatureBoostassumesthat
this differencecanbemodelledasrandomcorruptionand
eliminationof selectedfeatures.While this is aneffective
meansof focussingthelearner’sattentionawayfrom some
features,it probablyis not anaccuratemodelof how fea-
turesgetcorruptedin therealworld. For example,features
in imagestend to be corruptedin connectedregions. In
medicine,proceduresmayreturnresultsfor dozensof mea-
surementsata time. In bothexamples,featurescomeor go
in clumps. Theway in whichcorruptedfeaturesclumpde-
pendsonthedomain.It maybeusefulto devisespecialized
versionsof robustlearningwherethedatacorruptionmodel
betterfits theprocessesthataffect featuresin eachdomain.

An alternateapproachto robust learningthat we are ex-
aminingusesfeatureselectionto train modelson compact
setsof features.It thenremovestheselectedfeatures,and
trainsadditionalmodelsontheremainingfeatures.Thisap-
proachmaybettermodeldomainssuchasmedicinewhere
featuresbeingmissingis morecommonthanfeaturesbeing
corruptedor occluded.

FeatureBoost,whichis basedononemodelof robustlearn-
ing, haslimitations. Onelimitation is that thecurrentver-
sion of FeatureBoostis restrictedto classificationprob-
lems.This is why we wereunableto testFeatureBooston
theautonomousvehiclesteeringproblemthatinitially mo-
tivatedour investigation.We arecurrentlydevelopingan
extensionto FeatureBoostthatcanhandleregressionprob-
lems.

We arenot yet able to provide theoreticalguaranteesfor
FeatureBoostsimilar to thoseavailablefor boostingalgo-
rithmssuchasAdaBoost.Part of thedifficulty stemsfrom
the fact that robust learningis mostusefulwhenthe train
andtestdistributiondiffer in waysthatmaybedifficult to
characterize.Oneof our goalsis to find restricted(though
possiblylessrealistic)modelsof robustlearningwherewe
will beableto makestrongtheoreticalguarantees.

9. Summary

Mostmachinelearningalgorithmsextracttheminimumin-
formationfrom thetrainingsetthey needto accuratelypre-
dict thelabels.Oncethey learna modelthatperformswell
onthetrainingdata,they stoplearning.This lazinessmakes
the modelsthey learnlessrobust on future testcasesthat
have missingor occludedfeatures.Often thereis redun-
dancy in theinputsthatcouldhave beenexploitedto learn
modelsmorerobustto thelossor corruptionof someinput
features.A learningalgorithmthatwaslesslazy would try
to learnasmany differentmodelsfrom theavailableinputs
aspossible.

Motivatedby this,we introduceda generallearningframe-
work called robust learning. We then presenteda meta-
learningalgorithmcalledFeatureBoostthatmakesthema-
chinelearningalgorithmit is appliedto morerobust. We
demonstratedFeatureBoostwith three different learning
methods:backpropnets,k-nearestneighbor, anddecision
trees.TheresultssuggestFeatureBoostcanusethesemeth-
odsto learnmodelsthataremorerobust to the lossof im-
portantfeaturesin thetestdata.
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