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Abstract. The technology for building knowledge-based systems by inductive inference from examples has 
been demonstrated successfully in several practical applications. This paper summarizes an approach to 
synthesizing decision trees that has been used in a variety of systems, and it describes one such system, 
ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal 
with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is 
discussed and two means of overcoming it are compared. The paper concludes with illustrations of current 
research directions. 

1. Introduction 

Since artificial intelligence first achieved recognition as a discipline in the mid 1950's, 
machine learning has been a central research area. Two reasons can be given for this 
prominence. The ability to learn is a hallmark of  intelligent behavior, so any attempt 
to understand intelligence as a phenomenon must include an understanding of  learn- 
ing. More concretely, learning provides a potential methodology for building high- 
performance systems. 

Research on learning is made up of  diverse subfields. At one extreme there are 
adaptive systems that monitor  their own performance and attempt to improve it by 
adjusting internal parameters. This approach, characteristic of  a large proport ion of  
the early learning work, produced self-improving programs for playing games 
(Samuel, 1967), balancing poles (Michie, 1982), solving problems (Quinlan, 1969) 
and many other domains. A quite different approach sees learning as the acquisition 
of  structured knowledge in the form of  concepts (Hunt,  1962; Winston, 1975), 

-discrimination nets (Feigenbaum and Simon, 1963), or production rules (Buchanan, 
1978). 

The practical importance of  machine learning of  this latter kind has been underlin- 
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ed by the advent of  knowledge-based expert systems. As their name suggests, these 
systems are powered by knowledge that is represented explicitly rather than being im- 
plicit in algorithms. The knowledge needed to drive the pioneering expert systems was 
codified through protracted interaction between a domain specialist and a knowledge 
engineer. While the typical rate of  knowledge elucidation by this method is a few 
rules per man day, an expert system for a complex task may require hundreds or even 
thousands of  such rules. It is obvious that the interview approach to knowledge ac- 
quisition cannot keep pace with the burgeoning demand for expert systems; Feigen- 
baum (1981) terms this the 'bottleneck' problem. This perception has stimulated the 
investigation of  machine learning methods as a means of  explicating knowledge 
(Michie, 1983). 

This paper focusses on one microcosm of  machine learning and on a family of  
learning systems that have been used to build knowledge-based systems of  a simple 
kind. Section 2 outlines the features of  this family and introduces its members. All 
these systems address the same task of  inducing decision trees from examples. After 
a more complete specification of this task, one system (ID3) is described in detail in 
Section 4. Sections 5 and 6 present extensions to ID3 that enable it to cope with noisy 
and incomplete information. A review of  a central facet of  the induction algorithm 
reveals possible improvements that are set out in Section 7. The paper concludes with 
two novel initiatives that give some idea of  the directions in which the family may 
grow. 

2. The TDIDT family of learning systems 

Carbonell, Michalski and Mitchell (1983) identify three principal dimensions along 
which machine learning systems can be classified: 

• the underlying learning strategies used; 
• the representation of  knowledge acquired by the system; and 
• the application domain of  the system. 

This paper is concerned with a family of  learning systems that have strong common 
bonds in these dimensions. 

Taking these features in reverse order, the application domain of  these systems is 
not limited to any particular area of  intellectual activity such as Chemistry or Chess; 
they can be applied to any such area. While they are thus general-purpose systems, 
the applications that they address all involve classification. The product of  learning 
is a piece of  procedural knowledge that can assign a hitherto-unseen object to one 
of  a specified number of  disjoint classes. Examples of  classification tasks are: 
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1. the diagnosis of  a medical condition from symptoms, in which the classes could 
be either the various disease states or the possible therapies; 

2. determining the game-theoretic value of  a chess position, with the classes won for 
white, lost for  white, and drawn; and 

3. deciding from atmospheric observations whether a severe thunderstorm is unlike- 
ly, possible or probable. 

It might appear that classification tasks are only a minuscule subset of  procedural 
tasks, but even activities such as robot planning can be recast as classification prob- 
lems (Dechter and Michie, 1985). 

The members of  this family are sharply characterized by their representation of  ac- 
quired knowledge as decision trees. This is a relatively simple knowledge formalism 
that lacks the expressive power of  semantic networks or other first-order representa- 
tions. As a consequence of  this simplicity, the learning methodologies used in the 
TDIDT family are considerably less complex than those employed in systems that can 
express the results of  their learning in a more powerful language. Nevertheless, it is 
still possible to generate knowledge in the form of  decision trees that is capable of 
solving difficult problems of  practical significance. 

The underlying strategy is non-incremental learning from examples. The systems 
are presented with a set of  cases relevant to a classification task and develop a deci- 
sion tree from the top down, guided by frequency information in the examples but 
not by the particular order in which the examples are given. This contrasts with in- 
cremental methods such as that employed in MARVIN (Sammut, 1985), in which a 
dialog is carried on with an instructor to 'debug' partially correct concepts, and that 
used by Winston (1975), in which examples are analyzed one at a time, each produc- 
ing a small change in the developing concept; in both of  these systems, the order in 
which examples are presented is most important.  The systems described here search 
for patterns in the given examples and so must be able to examine and re-examine 
all of them at many stages during learning. Other well-known programs that share 
this data-driven approach include BACON (Langley, Bradshaw and Simon, 1983) 
and INDUCE (Michalski, 1980). 

In summary, then, the systems described here develop decision trees for classifica- 
tion tasks. These trees are constructed beginning with the root  of  the tree and pro- 
ceeding down to its leaves. The family's palindromic name emphasizes that its 
members carry out the Top-Down Induction of  Decision Trees. 

The example objects from which a classification rule is developed are known only 
through their values of  a set of  properties or attributes, and the decision trees in turn 
are expressed in terms of  these same attributes. The examples themselves can be 
assembled in two ways. They might come from an existing database that forms a 
history of  observations, such as patient records in some area of  medicine that have 
accumulated at a diagnosis center. Objects of  this kind give a reliable statistical pic- 
ture but, since they are not organized in any way, they may be redundant or omit 
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Figure 1. The TDIDT family tree. 

uncommon cases that have not been encountered during the period of record- 
keeping. On the other hand, the objects might be a carefully culled set of  tutorial ex- 
amples prepared by a domain expert, each with some particular relevance to a com- 
plete and correct classification rule. The expert might take pains to avoid redundancy 
and to include examples of  rare cases. While the family of  systems will deal with col- 
lections of  either kind in a satisfactory way, it should be mentioned that earlier 
TDIDT systems were designed with the 'historical record'  approach in mind, but all 
systems described here are now often used with tutorial sets (Michie, 1985). 

Figure 1 shows a family tree of  the T D I D T  systems. The patriarch of  this family 
is Hunt ' s  Concept Learning System framework (Hunt,  Marin and Stone, 1966). CLS 
constructs a decision tree that attempts to minimize the cost of  classifying an object. 
This cost has components  of  two types: the measurement  cost of  determining the 
value of property A exhibited by the object, and the misclassification cost of  deciding 
that the object belongs to class J when its real class is K. CLS uses a lookahead 
strategy similar to minimax. At each stage, CLS explores the space of possible deci- 
sion trees to a fixed depth, chooses an action to minimize cost in this limited space, 
then moves one level down in the tree. Depending on the depth of  lookahead chosen, 
CLS can require a substantial amount  of  computat ion,  but has been able to unearth 
subtle patterns in the objects shown to it. 

ID3 (Quinlan, 1979, 1983a) is one of  a series of  programs developed f rom CLS in 
response to a challenging induction task posed by Donald Michie, viz. to decide f rom 
pattern-based features alone whether a particular chess position in the King-Rook vs 
King-Knight endgame is lost for the Knight 's  side in a fixed number  of  ply. A full 
description of  ID3 appears in Section 4, so it is sufficient to note here that it embeds 
a tree-building method in an iterative outer shell, and abandons the cost-driven 
lookahead of  CLS with an information-driven evaluation function. 

ACLS (Paterson and Niblett, 1983) is a generalization of  ID3. CLS and ID3 both 
require that  each property used to describe objects has only values from a specified 
set. In addition to properties of  this type, ACLS permits properties that have 
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unrestricted integer values. The capacity to deal with attributes of  this kind has allow- 
ed ACLS to be applied to difficult tasks such as image recognition (Shepherd, 1983). 

ASSISTANT (Kononenko, Bratko and Roskar, 1984) also acknowledges ID3 as 
its direct ancestor. It differs from ID3 in many ways, some of which are discussed 
in detail in later sections. ASSISTANT further generalizes on the integer-valued at- 
tributes of ACLS by permitting attributes with continuous (real) values. Rather than 
insisting that the classes be disjoint, ASSISTANT allows them to form a hierarchy, 
so that one class may be a finer division of another. ASSISTANT does not form a 
decision tree iteratively in the manner of  ID3, but does include algorithms for choos- 
ing a 'good'  training set from the objects available. ASSISTANT has been used in 
several medical domains with promising results. 

The bottom-most  three systems in the figure are commercial derivatives of  ACLS. 
While they do not significantly advance the underlying theory, they incorporate 
many user-friendly innovations and utilities that expedite the task of generating and 
using decision trees. They all have industrial successes to their credit. Westinghouse 
Electric's Water Reactor Division, for example, points to a fuel-enrichment applica- 
tion in which the company was able to boost revenue by 'more than ten million 
dollars per annum' through the use of one of  them. 1 

3. The induction task 

We now give a more precise statement of  the induction task. The basis is a universe 
of  objects that are described in terms of  a collection of  attributes. Each attribute 
measures some important feature of  an object and will be limited here to taking a 
(usually small) set of  discrete, mutually exclusive values. For example, if the objects 
were Saturday mornings and the classification task involved the weather, attributes 
might be 

outlook, with values {sunny, overcast, rain] 
temperature, with values {cool, mild, hot] 
humidity, with values {high, normal] 
windy, with values { true, false ] 

Taken together, the attributes provide a zeroth-order language for characterizing ob- 
jects in the universe. A particular Saturday morning might be described as 

outlook: overcast 
temperature: cool 
humidity: normal 
windy: false 

1 Letter cited in the journal Expert Systems (January, 1985), p. 20. 
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Each object in the universe belongs to one of  a set of  mutually exclusive classes. 
To simplify the following treatment, we will assume that there are only two such 
classes denoted P and N, although the extension to any number of  classes is not dif- 
ficult. In two-class induction tasks, objects of  class P and N are sometimes referred 

to as positive instances and negative instances, respectively, of  the concept being 
learned. 

The other major ingredient is a training set of objects whose class is known. The 

induction task is to develop a classification rule that can determine the class of  any 

object from its values of  the attributes. The immediate question is whether or not the 
attributes provide sufficient information to do this. In particular, if the training set 

contains two objects that have identical values for each attribute and yet belong to 

different classes, it is clearly impossible to differentiate between these objects with 
reference only to the given attributes. In such a case attributes will be termed inade- 
quate for the training set and hence for the induction task. 

As mentioned above, a classification rule will be expressed as a decision tree. Table 

1 shows a small training set that uses the 'Saturday morning'  attributes. Each object 's 

value of each attribute is shown, together with the class of  the object (here, class P 

mornings are suitable for some unspecified activity). A decision tree that correctly 
classifies each object in the training set is given in Figure 2. Leaves of  a decision tree 
are class names, other nodes represent attribute-based tests with a branch for each 
possible outcome. In order to classify an object, we start at the root of the tree, 
evaluate the test, and take the branch appropriate to the outcome. The process con- 
tinues until a leaf is encountered, at which time the object is asserted to belong to 

Table 1. A small training set 

No. Attributes Class 

Outlook Temperature Humidity Windy 

1 sunny hot high false N 

2 sunny hot high true N 

3 overcast hot high false P 
4 rain mild high false P 

5 rain cool normal false P 

6 rain cool normal true N 

7 overcast cool normal true P 

8 sunny mild high false N 

9 sunny cool normal false P 

10 rain mild normal false P 

11 sunny mild normal true P 

12 overcast mild high true P 
13 overcast hot normal false P 

14 rain mild high true N 
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sunny overcast rain 

high normal 

........ / \ ,  
NI iP:  
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Figure 2. A simple decision tree 

the class named by the leaf. Taking the decision tree of  Figure 2, this process con- 
cludes that the object which appeared as an example at the start of  this section, and 
which is not a member  of  the training set, should belong to class P. Notice that only 
a subset of  the attributes may be encountered on a particular path from the root of  
the decision tree to a leaf; in this case, only the outlook attribute is tested before 
determining the class. 

I f  the attributes are adequate, it is always possible to construct a decision tree that 
correctly classifies each object in the training set, and usually there are many such 
correct decision trees. The essence of induction is to move beyond the training set, 
i.e. to construct a decision tree that correctly classifies not only objects f rom the 
training set but other (unseen) objects as well. In order to do this, the decision tree 
must capture some meaningful relationship between an object 's  class and its values 
of  the attributes. Given a choice between two decision trees, each of  which is correct 
over the training set, it seems sensible to prefer the simpler one on the grounds that 
it is more likely to capture structure inherent in the problem. The simpler tree would 
therefore be expected to classify correctly more objects outside the training set. The 
decision tree of  Figure 3, for instance, is also correct for the training set of  Table 1, 
but its greater complexity makes it suspect as an 'explanat ion '  of  the training set. 2 

4. ID3 

One approach to the induction task above would be to generate all possible decision 
trees that correctly classify the training set and to select the simplest of  them. The 

z The preference for simpler trees, presented here as a commonsense  application o f  Occam's  Razor, is 

also supported by analysis. Pearl (1978b) and Quinlan (1983a) have derived upper bounds  on the expected 
error using different formalisms for generalizing f rom a set o f  known cases. For a training set of  predeter- 
mined size, these bounds  increase with the complexity o f  the induced generalization. 
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Figure 3. A complex decision tree. 

number  of  such trees is finite but very large, so this approach would only be feasible 
for small induction tasks. ID3 was designed for the other end of  the spectrum, where 
there are many  attributes and the training set contains many  objects, but where a 
reasonably good decision tree is required without much computat ion.  It has generally 
been found to construct simple decision trees, but the approach it uses cannot 
guarantee that better trees have not been overlooked. 

The basic structure of  ID3 is iterative. A subset of  the training set called the win- 

dow is chosen at random and a decision tree formed from it; this tree correctly 
classifies all objects in the window. All other objects in the training set are then 
classified using the tree. I f  the tree gives the correct answer for all these objects then 
it is correct for the entire training set and the process terminates. I f  not, a selection 
of  the incorrectly classified objects is added to the window and the process continues. 
In this way, correct decision trees have been found after only a few iterations for 
training sets of  up to thirty thousand objects described in terms of  up to 50 attributes. 
Empirical evidence suggests that a correct decision tree is usually found more quickly 
by this iterative method than by forming a tree directly f rom the entire training set. 
However,  O'Keefe  (1983) has noted that the iterative f ramework cannot be 
guaranteed to converge on a final tree unless the window can grow to include the en- 
tire training set. This potential limitation has not yet arisen in practice. 

The crux of  the problem is how to form a decision tree for an arbitrary collection 
C of  objects. I f  C is empty or contains only objects of  one class, the simplest decision 
tree is just a leaf labelled with the class. Otherwise, let T be any test on an object with 
possible outcomes O1, Oz . . . .  Ow. Each object in C will give one of  these outcomes 
for T, so T produces a parti t ion [ C1, C2 . . . .  Cw} of  C with Ci containing those ob- 
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Figure 4. A tree structuring of the objects in C. 

jects having outcome Oi. This is represented graphically by the tree form of Figure 
4. I f  each subset Ci in this figure could be replaced by a decision tree for Ci, the result 
would be a decision tree for all of  C. Moreover~ so long as two or more Ci's are non- 
empty, each Ci is smaller than C. In the worst case, this divide-and-conquer strategy 
will yield single-object subsets that satisfy the one-class requirement for a leaf. Thus, 
provided that a test can always be found that gives a non-trivial partition of  any set 
of  objects, this procedure will always produce a decision tree that correctly classifies 
each object in C. 

The choice of  test is crucial if the decision tree is to be simple. For the moment ,  
a test will be restricted to branching on the values of  an attribute, so choosing a test 
comes down to selecting an attribute for the root of  the tree. The first induction pro- 
grams in the ID series used a seat-of-the-pants evaluation function that worked 
reasonably  well. Following a suggestion of  Peter Gacs, ID3 adopted  an information- 
based method that depends on two assumptions. Let C contain p objects of  class P 
and n of  class N. The assumptions are: 

(1) Any correct decision tree for C will classify objects in the same proport ion as 
their representation in C. An arbitrary object will be determined to belong to 

class P with probabili ty p / (p  + n) and to class N with probabili ty n/ (p  + n). 
(2) When a decision tree is used to classify an object, it returns a class. A decision 

tree can thus be regarded as a source of  a message 'P '  or 'N ' ,  with the expected 
information needed to generate this message given by 

I (p, n) - P log2 P ~ log2 
p + n  p + n  p + n  p + n  

I f  attribute A with values [ AI, A2 . . . .  Av ] is used for the root of  the decision tree, 
-it will partition C into [C1, Ca . . . .  Cv] where Ci contains those objects in C that 
have value Ai of  A. Let Ci contain Pi objects of  class P and ni of  class N. The expected 
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information required for the subtree for Ci is I(pi, ni). The expected information re- 
quired for the tree with A as root is then obtained as the weighted average 

V 

E(A) = Z Pi + n i I(pi, ni) 
i = l  p + n  

where the weight for the ith branch is the proport ion of  the objects in C that belong 
to Ci. The information gained by branching on A is therefore 

gain(A) = I(p, n) - E(A) 

A good rule of  thumb would seem to be to choose that attribute to branch on which 
gains the most information.  3 ID3 examines all candidate attributes and chooses A to 
maximize gain(A), forms the tree as above, and then uses the same process recursively 
to form decision trees for the residual subsets C1, CE . . . .  Cv. 

To illustrate the idea, let C be the set of  objects in Table 1. Of  the 14 objects, 9 
are of  class P and 5 are of  class N, so the information required for classification is 

9 logz 9 5 log2 5 0.940 bits 
I(p, n) - 14 14 14 14 = 

Now consider the outlook attribute with values [ sunny, overcast, rain }. Five of the 
14 objects in C have the first value (sunny), two of  them from class P and three f rom 
class N, so 

p l = 2  

and similarly 

Pz = 4 
P3 = 3 

nl = 3 I ( p l ,  h i )  = 0.971 

n2 = 0 I (p2,  n2) = 0 

n3 = 2 I (p3,  n3) = 0 .971  

The expected information requirement after testing this attribute is therefore 

5 4 5 
E (outlook) = ]-~ I(pl, nl) + ]~  I (P2, n2) + ]~  I(p3, n3) 

= 0.694 bits 

3 Since l(p,n) is constant for all attributes, maximizing the gain is equivalent to minimizing E(A), which 
is the mutual information Of the attribute A and the class. Pearl (1978a) contains an excellent account of  
the rationale of  information-based heuristics. 
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The gain of  this attribute is then 

gain(outlook) = 0.940 - E(outlook) = 0.246 bits 

Similar analysis gives 

gain(temperature) = 0.029 bits 
gain(humidity) = 0.151 bits 

gain(windy) = 0.048 bits 

so the tree-forming method used in ID3 would choose outlook as the attribute for 
the root of  the decision tree. The objects would then be divided into subsets according 
to their values of  the outlook attribute and a decision tree for each subset would be 
induced in a similar fashion. In fact, Figure 2 shows the actual decision tree generated 
by ID3 f rom this training set. 

A special case arises if C contains no objects with some particular value Aj of  A, 

giving an empty Cj. ID3 labels such a leaf as 'null '  so that it fails to classify any object 
arriving at that leaf. A better solution would generalize f rom the set C f rom which 
Cj came, and assign this leaf the more frequent class in C. 

The worth of  ID3's  attribute-selecting heuristic can be assessed by the simplicity 
of  the resulting decision trees, or, more to the point, by how well those trees express 
real relationships between class and attributes as demonstrated by the accuracy with 
which they classify objects other than those in the training set (their predictive ac- 
curacy). A straightforward method of assessing this predictive accuracy is to use only 
'part of the given set o f  objects as a training set, and to check the resulting decision 
tree on the remainder.  

Several experiments of  this kind have been carried out. In one domain, 1.4 million 
Chess positions described in terms of 49 binary-valued attributes gave rise to 715 
distinct objects divided 65% :35% between the classes. This domain is relatively com- 
plex since a correct decision tree for all 715 objects contains about 150 nodes. When 
training sets containing 20% of these 715 objects were chosen at random, they pro- 
duced decision trees that correctly classified over 84% of  the unseen objects. In 
another version of  the same domain,  39 attributes gave 551 distinct objects with a 
correct decision tree of  similar size; training sets of  20% of  these 551 objects gave 
decision trees of  almost identical accuracy. In a simpler domain (1,987 objects with 
a correct decision tree of  48 nodes), randomly-selected training sets containing 20°7o 
of  the objects gave decision trees that correctly classified 98% of  the unseen objects. 
In all three cases, it is clear that the decision trees reflect useful (as opposed to ran- 
dom) relationships present in the data. 

This discussion of  ID3 is rounded o f f  by looking at the computat ional  require- 
ments of  the procedure. At each non-leaf node of  the decision tree, the gain of  each 
untested attribute A must be determined. This gain in turn depends on the values pi 
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and ni for each value Ai of  A, so every object in C must be examined to determine 
its class and its value of  A. Consequently, the computat ional  complexity of  the pro- 
cedure at each such node is O ( I C I .  IAI),  where IAI is the number  of attributes 
above. ID3's  total computat ional  requirement per iteration is thus proportional  to 
the product of  the size of  the training set, the number  of  attributes and the number  
of  non-leaf nodes in the decision tree. The same relationship appears to extend to the 
entire induction process, even when several iterations are performed.  No exponential 
growth in time or space has been observed as the dimensions of  the induction task 
increase, so the technique can be applied to large tasks. 

5. Noise 

So far, the information supplied in the training set has been assumed to be entirely 
accurate. Sadly, induction tasks based on real-world data are unlikely to find this 
assumption to be tenable. The description of  objects may include attributes based on 
measurements or subjective judgements, both of  which may give rise to errors in the 
values of  attributes. Some of the objects in the training set may even have been 
misclassified. To illustrate the idea, consider the task of  developing a classification 
rule for medical diagnosis f rom a collection of  patient histories. An attribute might 
test for the presence of  some substance in the blood and will almost inevitably give 
false positive or negative readings some of  the time. Another  attribute might assess 
the patient 's  build as slight, medium, or heavy, and different assessors may apply dif- 
ferent criteria. Finally, the collection of  case histories will probably include some pa- 
tients for whom an incorrect diagnosis was made, with consequent errors in the class 
information provided in the training set. 

What  problems might errors of  these kinds pose for the tree-building procedure 
described earlier? Consider again the small training set in Table l, and suppose now 
that attribute outlook of  object 1 is incorrectly recorded as overcast. Objects 1 and 
3 will then have identical descriptions but belong to different classes, so the attributes 
become inadequate for this training set. The attributes will also become inadequate 
if attribute windy of  object 4 is corrupted to true, because that object will then con- 
flict with object 14. Finally, the initial training set can be accounted for by the simple 
decision tree of  Figure 2 containing 8 nodes. Suppose that the class of  object 3 were 
corrupted to N. A correct decision tree for this corrupted training set would now have 
to explain the apparent  special case of  object 3. The smallest such tree contains twelve 
nodes, half again as complex as the ' real '  tree. These illustrations highlight two prob- 
lems: errors in the training set may cause the attributes to become inadequate, or may 
lead to decision trees of  spurious complexity. 

Non-systematic errors of  this kind in either the values of  attributes or class infor*- 
marion are usually referred to as noise. Two modifications are required if the tree- 
building algorithm is to be able to operate with a noise-affected training set. 
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(1) The algorithm must be able to work with inadequate attributes, because noise can 

cause even the most comprehensive set of  attributes to appear inadequate. 
"(2) The algorithm must be able to decide that testing further attributes will not im- 

prove the predictive accuracy of  the decision tree. In the last example above, it 
should refrain f rom increasing the complexity of  the decision tree to accom- 
modate  a single noise-generated special case. 

We start with the second requirement of  deciding when an attribute is really rele- 
vant to classification. L e t C  be a collection of  objects containing representatives of  
both classes, and let A be an attribute with random values that produces subsets { C1, 
C2 . . . .  Cv 1. Unless the proport ion of  class P objects in each of the Ci is exactly the 
same as the proport ion of  class P objects in C itself, branching on attribute A will 
give an apparent  information gain. It will therefore appear  that testing attribute A 
is a sensible step, even though the values of  A are random and so cannot help to 
classify the objects in C. 

One solution to this di lemma might be to require that the information gain of  any 
tested attribute exceeds some absolute or percentage threshold. Experiments with this 
approach suggest that a threshold large enough to screen out irrelevant attributes also 
excludes attributes that are relevant, and the performance of  the tree-building pro- 
cedure is degraded in the noise-free case. 

An alternative method based on the chi-square test for stocbastic independence has 
been found to be more useful. In the previous notation, suppose attribute A produces 
subsets 1C1, C2 . . . .  Cv} of  C, where Ci contains pi and ni objects of  class P and N, 
respectively. I f  the value of  A is irrelevant to the class of  an object in C, the expected 
~?alue p ' i  of  pi should be 

P ' i  = P • p i + n i  
p + n  

I f  n ' i  is the corresponding expected value of  ni, the statistic 

v (Pi--P ,)2 (n i - -n ' i )  2 Z + 
i=1 P~i n t i  

is approximately chi-square with v-1 degrees of  freedom. Provided that none of  the 
values p ' i  or n ' i  are very small, this statistic can be used to determine the confidence 
with which one can reject the hypothesis that A is independent of  the class of  objects 
in C (Hogg and Craig, 1970). The tree-building procedure can then be modified to 
prevent testing any attribute whose irrelevance cannot be rejected with a very high 
(e.g. 99%) confidence level. This has been found effective in preventing over- 
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complex  trees tha t  a t t empt  to ' f i t  the  noise '  wi thout  af fec t ing  p e r f o r m a n c e  o f  the  p ro-  
cedure  in the  noise-f ree  case. 4 

Turn ing  now to the first  r equ i rement ,  we see tha t  the  fo l lowing s i tua t ion  can arise:  

a col lec t ion  of  C objec ts  m a y  con ta in  representa t ives  o f  bo th  classes, yet  fur ther  

test ing o f  C may  be ru led  out ,  e i ther  because  the  a t t r ibu tes  are  inadequa te  and  unable  

to d is t inguish  among  the ob jec t s  in C, or  because  each a t t r ibu te  has been j udged  to 

be i r re levant  to the class o f  objec ts  in C. In this s i tua t ion  it is necessary to  p roduc e  

a leaf  label led  with class i n fo rma t ion ,  bu t  the  objec ts  in C are not  all o f  the same 
class. 

Two  possibi l i t ies  suggest  themselves .  The  no t ion  o f  class could  be genera l ized  to 

a l low the value  p / ( p  + n) in the  in terval  (0,1), a class o f  0.8 (say) being in te rpre ted  

as ' be long ing  to class P with p r o b a b i l i t y  0 .8 ' .  A n  a l te rna t ive  a p p r o a c h  would  be to  

op t  for  the  more  n u m e r o u s  class, i .e. to assign the leaf  to class P if  p > n, to class 

N if  p < n, and  to ei ther if  p = n. The  first  a p p r o a c h  minimizes  the  sum o f  the  

squares  o f  the  er ror  over  objec ts  in C, while the  second minimizes  the sum of  the ab-  

solute  er rors  over  ob jec t s  in C. I f  the a im is to  min imize  expected er ror ,  the  second 
a p p r o a c h  might  be an t i c ipa ted  to be super ior ,  and  indeed this has been found  to be 

the case. 

Several  studies have been carr ied  out  to see how this mod i f i ed  p rocedu re  holds  up 

under  vary ing  levels o f  noise  (Quin lan  1983b, 1985a). One such s tudy is ou t l ined  here 

based  on the ea r l i e r -men t ioned  task  with 551 ob jec t s  and  39 b ina ry -va lued  a t t r ibu tes .  

In  each exper iment ,  the  whole  set o f  ob jec t s  was ar t i f ic ia l ly  co r rup ted  as descr ibed  

be low and  used as a t ra in ing  set to p r o d u c e  a decis ion tree.  Each  objec t  was then cor-  

rup ted  anew,  classif ied by  this tree and  the e r ror  ra te  de te rmined .  This  process  was 

repea ted  twenty  t imes to give more  re l iable  averages .  

In  this  s tudy,  values were co r rup ted  as fol lows.  A noise level o f  n percent  app l i ed  

to a value  mean t  tha t ,  with p robab i l i t y  n percent ,  the  t rue  value was rep laced  by  a 

value chosen  at r a n d o m  f rom a m o n g  the values  tha t  could  have appea red .  5 Table  2 

shows the results when noise levels vary ing  f rom 5% to 100% were app l ied  to the 

values o f  the  mos t  noise-sensi t ive a t t r ibu te ,  to the values o f  all a t t r ibu tes  

s imul taneous ly ,  and  to the  class i n fo rma t ion .  This  tab le  demons t r a t e s  the  qui te  dif-  

ferent  fo rms  o f  d e g r a d a t i o n  observed.  Des t roy ing  class i n fo rma t ion  p roduces  a 

l inear  increase  in e r ror  so tha t ,  when all class i n f o r m a t i o n  is noise,  the resul t ing deci- 

s ion tree classifies objects  ent i re ly  r a n d o m l y .  Noise  in a single a t t r ibu te  does  not  have 

a d r ama t i c  effect .  Noise  in all a t t r ibu tes  together ,  however ,  leads to a re la t ively r ap id  

increase  in error  which reaches  a peak  and  declines.  The  peak  is s o m e w h a t  inter-  

4 ASSISTANT uses an information-based measure to perform much the same function, but no com- 
parative results are available to date. 

5 It might seem that the value should be replaced by an incorrect value. Consider, however, the case 
of a two-valued attribute corrupted with 100% noise. If the value of each object were replaced by the (on- 
ly) incorrect value, the initial attribute will have been merely inverted with no loss of information. 
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Table 2. Error rates produced by noise in a single attribute, all attributes, and class information 

Noise Single All Class 
level attribute attributes information 

5070 1.3% 11.9% 2.6% 

10070 2.5% 18.9% 5.5% 

15% 3.3070 24.6% 8.3% 
20% 4.6% 27.80/0 9.9% 

30% 6.1% 29.5% 14.8% 
40% 7.6% 30.3% 18.1% 

50% 8.8% 29.2% 21.8% 

60% 9.4% 27.5% 26.4070 

70% 9.9% 25.9% 27.2% 

80% 10.4% 26.0% 29.5% 
90% 10.8% 25.6% 34.1% 

100% 10.8% 25.9% 49.6% 

esting, and can be explained as follows. Let C be a collection of  objects containing 
p from class P and n from class N, respectively. At noise levels around 50%, the 

algorithm for constructing decision trees may still find relevant attributes to branch 
on, even though the performance of  this tree on unseen but equally noisy objects will 
be essentially random. Suppose the tree for C classifies objects as class P with pro- 
bability p/(n + p). The expected error if objects with a similar class distribution to 
those in C were classified by this tree is given by 

P • (1 - ~ P  ) + n . (1 n_~_) _ 2pn 
p + n  p + n  p + n  p + n  (p+n)  2 

At very high levels of  noise, however, the algorithm will find all attributes irrelevant 
and classify everything as the more frequent class; assume without loss of  generality 
that this class is P. The expected error in this case is 

p . 0 + n . l _  n 
p + n  p + n  p + n  

which is less than the above expression since we have assumed that p is greater than 
n. The decline in error is thus a consequence of the chi-square cutoff  coming into play 
as noise becomes more intense. 

The table brings out the point that low levels of  noise do not cause the tree-building 
fnachinery to fall over a cliff. For this task, a 5°7o noise level in a single attribute pro- 
duces a degradation in performance of  less than 2%; a 5 o70 noise level in all attributes 
together produces a 12% degradation in classification performance; while a similar 
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noise level in class information results in a 3°70 degradation. Comparable  figures have 
been obtained for other induction tasks. 

One interesting point emerged f rom other experiments in which a correct decision 
tree formed f rom an uncorrupted training set was used to classify objects whose 
descriptions were corrupted. This scenario corresponds to forming a classification 
rule under controlled and sanitized laboratory conditions, then using it to classify ob- 
jects in the field. For higher noise levels, the performance of  the correct decision tree 
on corrupted data was found to be inferior to that of  an imperfect decision tree form- 
ed f rom data corrupted to a similar level! (This phenomenon has an explanation 
similar to that  given above for the peak in Table 2.) The moral  seems to be that it 
is counter-productive to eliminate noise f rom the attribute information in the train- 
ing set if these same attributes will be subject to high noise levels when the induced 

decision tree is put to use. 

6. U n k n o w n  attribute values 

The previous section examined modifications to the tree-building process that en- 
abled it to deal with noisy or corrupted values. This section is concerned with an allied 
problem that also arises in practice: unknown attribute values. To continue the 
previous medical diagnosis example, what should be done when the patient case 
histories that are to form the training set are incomplete? 

One way around the problem attempts to fill in an unknown value by utilizing in- 
format ion provided by context. Using the previous notation, let us suppose that a 
collection C of  objects contains one whose value of  attribute A is unknown. ASSIS 
T A N T  (Kononenko et al, 1984) uses a Bayesian formalism to determine the prob- 
ability that the object has value Ai of  A by examining the distribution of values of  
A in C as a function of  their class. Suppose that the object in question belongs t o  
class P. The probabili ty that the object has value Ai for attribute A can be expressed 
as 

p r o b ( A = A i l  class = P) = p r o b ( A = A i  & c lass=P)  = pi 
prob(class = P) p 

where the calculation of Pi and p is restricted to those members  of  C whose value of  
A is known. Having determined the probabili ty distribution of  the unknown value 
over the possible values of  A, this method could either choose the most likely value 
or divide the object into fractional objects, each with one possible value of A, 
weighted according to the probabilities above. 

Alert Shapiro (private communication) has suggested using a decision-tree ap-" 
proach to determine the unknown values of  an attribute. Let C '  be the subset of  C 
consisting of  those objects whose value of  attribute A is defined. In C ' ,  the original 
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Table 3. Proportion of times that an unknown attribute value is replaced by an incorrect value 

Replacement Attribute 
method 

1 2 3 

Bayesian 28% 27% 38°7o 
Decision tree 19% 22% 19070 
Most common value 28°7o 27°70 4007o 

class (P or N) is regarded as another attribute while the value of attribute A becomes 
the 'class' to be determined. That is, C '  is used to construct a decision tree for deter- 

mining the value of  attribute A from the other attributes and the class. When con- 

structed, this decision tree can be used to 'classify' each object in C - C '  and the 
result assigned as the unknown value of  A. 

Although these methods for determining unknown attribute values look good on 
paper, they give unconvincing results even when only a single value of  one attribute 
is unknown; as might be expected, their performance is much worse when several 

values of  several attributes are unknown. Consider again the 551-object 39-attribute 

task. We may ask how well the methods perform when asked to fill in a single 
unknown attribute value. Table 3 shows, for each of  the three most important at- 
tributes, the proportion of  times each method fails to replace an unknown value by 
its correct value. For comparison, the table also shows the same figure for the simple 
strategy: always replace an unknown value of  an attribute with its most common 
"value. The Bayesian method gives results that are scarcely better than those given by 

the simple strategy and, while the decision-tree method uses more context and is 
thereby more accurate, it still gives disappointing results. 

Rather than trying to guess unknown attribute values, we could treat 'unknown '  
as a new possible value for each attribute and deal with it in the same way as other 

values. This can lead to an anomalous situation, as shown by the following example. 
Suppose A is an attribute with values [ A1, A2 } and let C be a collection of  objects 
such that 

Pl = 2 p2 = 2 
n~ = 2  n 2 = 2  

giving a value of  1 bit for E(A). Now let A '  be an identical attribute except that one 
of  the objects with value A1 of  A has an unknown value of  A ' .  A '  has the values 
{ A '  1, A '  2, A '  3 = unknown }, so the corresponding values might be 

P ' I  = 1 P ' 2  = 2 P ' 3  = 1 
n ' l  = 2 n '2  = 2 n '3  = 0 
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resulting in a value of  0.84 bits for E(A ' ) .  In terms of  the selection criterion 
developed earlier, A '  now seems to give a higher information gain than A. Thus, hav- 
ing unknown values may apparently increase the desirability of  an attribute, a result  
entirely opposed to common sense. The conclusion is that treating 'unknown'  as a 
separate value is not a solution to the problem. 

One strategy which has been found to work well is as follows. Let A be an attribute 
with values [ A1, A2 . . . .  Av }. For some collection C of  objects, let the numbers of  
objects with value Ai of  A be Pi and ni, and let pu and nu denote the numbers of  ob- 
jects of  class P and N respectively that have unknown values of  A. When the informa- 
tion gain of  attribute A is assessed, these objects with unknown values are distributed 
across the values of  A in proport ion to the relative frequency of  these values in C. 
Thus the gain is assessed as if the true value of Pi were given by 

pi + pu • ratioi 

where 

r a t i o i  -- p i + n i  
(Pi + ni) 

i 

and similarly for ni. (This expression has the property that unknown values can only 
decrease the information gain of  an attribute.) When an attribute has been chosen. 

by the selection criterion, objects with unknown values of  that attribute are discarded 
before forming decision trees for the subsets [Ci}. 

The other half  of  the story is how unknown attribute values are dealt with during 
classification. Suppose that an object is being classified using a decision tree that 
wishes to branch on attribute A, but the object 's  value of  attribute A is unknowm 
The correct procedure would take the branch corresponding to the real value Ai but, 
since this value is unknown, the only alternative is to explore all branches without 
forgetting that some are more probable than others. 

Conceptually, suppose that, along with the object to be classified, we have been 

passed a token with some value T. In the situation above, each branch of Ai is then 
explored in turn, using a token of  value 

T • ratioi 

i.e. the given token value is distributed across all possible values in proport ion to the 
ratios above. The value passed to a branch may be distributed further by subsequent 
tests on other attributes for which this object has unknown values. Instead of a singl~ 
path to a leaf, there may now be many,  each qualified by its token value. These token 
values at the leaves are summed for each class, the result of  the classification being 
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Figure 5. Error produced by unknown attribute values. 

that class with the higher value. The distribution of  values over the possible classes 
might also be used to compute a confidence level for the classification. 

Straightforward though it may be, this procedure has been found to give a very 
graceful degradation as the incidence of  unknown values increases. Figure 5 sum- 
marizes the results of  an experiment on the now-familiar  task with 551 objects and 
• 39 attributes. Various ' ignorance levels' analogous to the earlier noise levels were ex- 
plored, with twenty repititions at each level. For each run at an ignorance level of  
fn percent, a copy of  the 551 objects was made,  replacing each value of  every attribute 
by ' unknown '  with m percent probability. A decision tree for these (incomplete) 
objects was formed as above, and then used to classify a new copy of each object 
corrupted in the same way. The figure shows that the degradation of  performance 
with ignorance level is gradual.  In practice, of  course, an ignorance level even as high 
as 10% is unlikely - this would correspond to an average of  one value in every ten 
of  the object 's  description being unknown. Even so, the decision tree produced f rom 
such a patchy training set correctly classifies nearly ninety percent of  objects that also 
have unknown values. A much lower level o f  degradation is observed when an object 
with unknown values is classified using a correct decision tree. 

This t reatment has assumed that no information whatsoever is available regarding 
an unknown attribute. Catlett (1985) has taken this approach a stage further by 
allowing partial knowledge of  an attribute value to be stated in Shafer notation 
(Garvey, Lowrance and Fischler, 1981). This notat ion permits probabilistic asser- 
tions to be made about  any subset or subsets of  the possible values of  an attribute 
fhat an object might have. 
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7. The selection criterion 

Attention has recently been refocussed on the evaluation function for selecting the" 
best attribute-based test to form the root of  a decision tree. Recall that the criterion 
described earlier chooses the attribute that gains most information.  In the course of  
their experiments, Bratko 's  group encountered a medical induction problem in whicli 
the attribute selected by the gain criterion ( 'age of  patient ' ,  with nine value ranges) 
was judged by specialists to be less relevant than other attributes. This situation was 
also noted on other tasks, prompting Kononenko et al (1984) to suggest that the gain 
criterion tends to favor attributes with many values. 

Analysis supports this finding• Let A be an attribute with values A~, A2 . . . .  Av 
and let A '  be an attribute formed f rom A by splitting one of the values into two. I f  
the values of  A were sufficiently fine for the induction task at hand, we would not 
expect this refinement to increase the usefulness of  A. Rather, it might be anticipated 
that excessive fineness would tend to obscure structure in the training set so that A '  
was in fact less useful than A. However,  it can be proved that gain(A ' )  is greater than 
or equal to gain(A), being equal to it only when the proport ions of  the classes are 
the same for both subdivisions of  the original value. In general, then, ga in(A' )  will 
exceed gain(A) with the result that the evaluation function of  Section 4 will prefer 
A '  to A. By analogy, attributes with more values will tend to be preferred to at- 
tributes with fewer. 

As another way of  looking at the problem, let A be an attribute with random values 
and suppose that the set of  possible values of  A is large enough to make it unlikely, 
that two objects in the training set have the same value for A. Such an attribute would 
have maximum information gain, so the gain criterion would select it as the root of  
the decision tree. This would be a singularly poor  choice since the value of  A, being 
random, contains no information pertinent to the class of  objects in the training set. 

ASSISTANT (Kononenko et al, 1984) solves this problem by requiring that all test~ 
have only two outcomes. I f  we have an attribute A as before with v values A1, A2, 
• . .  Av, the decision tree no longer has a branch for each possible value. Instead, a 
subset S of  the values is chosen and the tree has two branches, one for all values in 
the set and one for the remainder.  The information gain is then computed as if all 
values in S were amalgamated  into one single attribute value and all remaining values 
into another.  Using this selection criterion (the subset criterion), the test chosen for 
the root o f  the decision tree uses the attribute and subset of  its values that maximizes 
the information gain. Kononenko et al report that  this modification led to smaller 
decision trees with an improved classification performance.  However,  the trees were 
judged to be less intelligible to human beings, in agreement with a similar finding of  

Shepherd (1983). 
Limiting decision trees to a binary format  harks back to CLS, in which each test 

was of  the form 'at tr ibute A has value Ai', with two branches corresponding to true 
and false• This is clearly a special case of  the test implemented in ASSISTANT,  which 
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permits a set of  values, rather than a single value, to be distinguished from the others. 
It is also worth noting that the method of  dealing with attributes having continuous 

values follows the same binary approach.  Let A be such an attribute and suppose that 
the distinct values of  A that occur in C are sorted to give the sequence Va, V2 . . . .  , 
Vk. Each pair of  values Vi, Vi + l suggests a possible threshold 

Wi 4- Wi+l 

that divides the objects of  C into two subsets, those with a value of  A above and 
below the threshold respectively. The information gain of  this division can then be 
investigated as above. 

I f  all tests must be binary, there can be no bias in favor of  attributes with large 
numbers of  values. It could be argued, however, that ASSISTANT's  remedy has 
undesirable side-effects that have to be taken into account. First, it can lead to deci- 
sion trees that are even more unintelligible to human experts than is ordinarily the 
case, with unrelated attribute values being grouped together and with multiple tests 
on the same attribute. 

More importantly,  the subset criterion can require a large increase in computat ion.  
An attribute A with v values has 2 v value subsets and, when trivial and symmetric 
subsets are removed,  there are still 2 v - l -  1 different ways of  specifying the 

distinguished subset of  attribute values. The information gain realized with each of 
these must be investigated, so a single attribute with v values has a computat ional  
requirement similar to 2 v-1 _ 1 binary attributes. This is not of  particular conse- 
~luence if v is small, but the approach would appear infeasible for an attribute with 
20 values. 

Another  method of  overcoming the bias is as follows. Consider again our training 
set containing p and n objects of  class P and N respectively. As before, let attribute 
A have values A1, A2 . . . .  Av and let the numbers of  objects with value Ai of  attribute 
A be pl and nl respectively. Enquiring about  the value of  attribute A itself gives rise 
to information,  which can be expressed as 

.,...,~- Pi + ni log2 Pi + ni IV(A) 
i = l  p + n  p + n  

IV(A) thus measures the informat ion content of  the answer to the question, 'What  
is the value of  attribute A? '  As discussed earlier, gain(A) measures the reduction in 
the information requirement for a classification rule if the decision tree uses attribute 
A as a root.  Ideally, as much as possible of  the information provided by determining 
the value of  an attribute should be useful for classification purposes or, equivalently, 
as little as possible should be 'wasted ' .  A good choice of  attribute would then be one 
for which the ratio 
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gain(A) / IV(A) 

is as large as possible. This ratio, however, may not always be defined - IV(A) may 
be zero - or it may tend to favor attributes for which IV(A) is very small. The gain 
ratio criterion selects, f rom among those attributes with an average-or-better gain, 
the attribute that maximizes the above ratio. 

This can be illustrated by returning to the example based on the training set of  
Table 1. The information gain of  the four attributes is given in Section 4 as 

gain(outlook) = 0.246 bits 
gain(temperature) = 0.029 bits 

gain(humidity) = 0.151 bits 
gain(windy) = 0.048 bits 

Of these, only outlook and humidity have above-average gain. For the outlook at- 
tribute, five objects in the training set have the value sunny, four have overcast and 
five have rain. The information obtained by determining the value of  the outlook at- 
tribute is therefore 

5 log2 5 4 log2 4 5 log2 5 
IV(outlook) = - 14 14 14 14 14 14 

= 1.578 bits 

Similarly, 

7 7 7 7 
IV(humidity) - log2 log2 . ~  = 1 bit 

14 14 14 4 1  

So, 

gain ratio(outlook) = 0.246 / 1.578 = 0.156 
gain ratio(humidity) = 0.151 / 1.000 = 0.151 

The gain ratio criterion would therefore still select the outlook attribute for the root 
of  the decision tree, al though its superiority over the humidity attribute is now much 
reduced. 

The various selection criteria have been compared empirically in a series of  ex- 
periments (Quinlan, 1985b). When all attributes are binary, the gain ratio criterion 
has been found to give considerably smaller decision trees: for the 551-object task, 
it produces a tree of  143 nodes compared to the smallest previously-known tree of  
175 nodes. When the task includes attributes with large numbers of  values, the subset 
criterion gives smaller decision trees that also have better predictive performance,  but 
can require much more computat ion.  However,  when these many-valued attributes 
are augmented by redundant  attributes which contain the same information at a 
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lower level of  detail, the gain ratio criterion gives decision trees with the greatest 
predictive accuracy. All in all, these experiments suggest that the gain ratio criterion 
does pick a good attribute for the root of  the tree. Testing an attribute with many 
values, however, will f ragment  the training set C into very small subsets [Ci} and 
the decision trees for these subsets may then have poor  predictive accuracy. In such 
cases, some mechanism such as value subsets or redundant attributes is needed to pre- 
vent excessive fragmentation.  

The three criteria discussed here are all information-based,  but there is no reason 
to suspect that this is the only possible basis for such criteria. Recall that the 
modifications to deal with noise barred an attribute f rom being used in the decision 
tree unless it could be shown to be relevant to the class of  objects in the training set. 
For any attribute A, the value of  the statistic presented in Section 5, together with 
the number  v of  possible values of A, determines the confidence with which we can 
reject the null hypothesis that an object 's  value of  A is irrelevant to its class. Har t  
(1985) has proposed that this same test could function directly as a selection criterion: 
simply pick the attribute for which this confidence level is highest. This measure takes 
explicit account of  the number  of  values of  an attribute and so may not exhibit bias. 
Har t  notes, however, that the chi-square test is valid only when the expected values 
of  p '  i and n ' ]  are uniformly larger than four. This condition could be violated by 
a set C of  objects either when C is small or when few objects in C have a particular 
value of  some attribute, and it is not clear how such sets would be handled. No em- 
pirical results with this approach are yet available. 

"8. Conclusion 

The aim of  this paper  has been to demonstrate that the technology for building deci- 
; ion trees f rom examples is fairly robust.  Current  commercial  systems are powerful 
tools that have achieved noteworthy successes. The groundwork has been done for 
advances that will permit such tools to deal even with noisy, incomplete data typical 
of  advanced real-world applications. Work  is continuing at several centers to im- 
prove the performance of  the underlying algorithms. 

Two examples of  contemporary  research give some pointers to the directions in 
which the field is moving.  While decision trees generated by the above systems are 
fast to execute and can be very accurate, they leave much to be desired as representa- 
tions of  knowledge. Experts who are shown such trees for classification tasks in their 
own domain often can identify little familiar material.  It is this lack of  familiarity 
(and perhaps an underlying lack of modularity) that is the chief obstacle to the use 
of  induction for building large expert systems. Recent work by Shapiro (1983) offers 
h possible solution to this problem. In his approach,  called Structured Induction, a 

rule-formation task is tackled in the same style as structured programming.  The task 
is solved in terms of  a collection of  notional super-attributes, after which the subtasks 
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of inducing classification rules to find the values of the super-attributes are ap- 

proached in the same top-down fashion. In one classification problem studied, this 

method reduced a totally opaque, large decision tree to a hierarchy of  nine small deci- 

sion trees, each of which 'made sense' to an expert. 
ID3 allows only two classes for any induction task, although this restriction has 

been removed in most later systems. Consider, however, the task of developing a rule 

from a given set of  examples for classifying an animal as a monkey, giraffe, elephant, 

horse, etc. A single decision tree could be produced in which these various classes ap- 
peared as leaves. An alternative approach taken by systems such as INDUCE 

(Michalski, 1980) would produce a collection of  classification rules, one to 

discriminate monkeys from non-monkeys, another to discriminate giraffes from 
non-giraffes, and so on. Which approach is better? In a private communication, 
Marcel Shoppers has set out an argument showing that the latter can be expected to 
give more accurate classification of  objects that were not in the training set. The 

multi-tree approach has some associated problems - the separate decision trees may 
classify an animal as both a monkey and a giraffe, or fail to classify it as anything, 
for example - but if these can be sorted out, this approach may lead to techniques 

for building more reliable decision trees. 
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