
Scaling Up Machine Learning

Parallel and Distributed Approaches

Ron Bekkerman, LinkedIn
Misha Bilenko, MSR

John Langford, Y!R

http://hunch.net/~large_scale_survey

Outline

Introduction Ron

Tree Induction Misha

Break

Graphical Models Misha

Learning on GPUs John

Linear Learning John

Conclusion John

The book

• Cambridge Uni Press

• Due in November 2011

• 21 chapters

• Covering

– Platforms

– Algorithms

– Learning setups

– Applications

10

2

Chapter contributors

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

Previous books

1998 2000 2000

10000

100000

1000000

10000000

100000000

2000 2004 2008 2012

Data hypergrowth: an example

• Reuters-21578: about
10K docs (ModApte)

• RCV1: about 807K docs

• LinkedIn job title data:
about 100M docs

Bekkerman et al, SIGIR 2001

Bekkerman & Scholz, CIKM 2008

Bekkerman & Gavish, KDD 2011

New age of big data

• The world has gone mobile

– 5 billion cellphones produce daily data

• Social networks have gone online

– Twitter produces 200M tweets a day

• Crowdsourcing is the reality

– Labeling of 100,000+ data instances is doable

• Within a week 

Size matters

• One thousand data instances

• One million data instances

• One billion data instances

• One trillion data instances

Those are not different numbers,
those are different mindsets 

One thousand data instances

• Will process it manually within a day (a week?)

– No need in an automatic approach

• We shouldn’t publish main results on datasets
of such size 

One million data instances

• Currently, the most active zone

• Can be crowdsourced

• Can be processed by a quadratic algorithm

– Once parallelized

• 1M data collection cannot be too diverse

– But can be too homogenous

• Preprocessing / data probing is crucial

Big dataset cannot be too sparse

• 1M data instances cannot belong to 1M classes

– Simply because it’s not practical to have 1M classes 

• Here’s a statistical experiment, in text domain:

– 1M documents

– Each document is 100 words long

– Randomly sampled from a unigram language model

• No stopwords

– 245M pairs have word overlap of 10% or more

• Real-world datasets are denser than random

Can big datasets be too dense?

3746554337.jpg

8374565642.jpg

2648697083.jpg

7264545727.jpg

6255434389.jpg

5039287651.jpg

3045938173.jpg

4596867462.jpg

8871536482.jpg

2037582194.jpg

Real-world example

(Near) duplicate detection
Bekkerman et al, KDD 2009

One billion data instances

• Web-scale

• Guaranteed to contain data in different formats

– ASCII text, pictures, javascript code, PDF documents…

• Guaranteed to contain (near) duplicates

• Likely to be badly preprocessed 

• Storage is an issue

One trillion data instances

• Beyond the reach of the modern technology

• Peer-to-peer paradigm is (arguably) the only
way to process the data

• Data privacy / inconsistency / skewness issues

– Can’t be kept in one location

– Is intrinsically hard to sample

A solution to data privacy problem
• n machines with n private

datasets

– All datasets intersect

– The intersection is shared

• Each machine learns a
separate model

• Models get consistent
over the data intersection

Xiang et al, Chapter 16

D1 D2

D3

D4 D5

D6

• Check out Chapter 16 to see this approach
applied in a recommender system!

So what model will we learn?

• Supervised model?

• Unsupervised model?

• Semi-supervised model?

• Obviously, depending on the application 

– But also on availability of labeled data

– And its trustworthiness!

Size of training data

• Say you have 1K labeled and 1M unlabeled
examples

– Labeled/unlabeled ratio: 0.1%

– Is 1K enough to train a supervised model?

• Now you have 1M labeled and 1B unlabeled
examples

– Labeled/unlabeled ratio: 0.1%

– Is 1M enough to train a supervised model?

Skewness of training data

• Usually, training data comes from users

• Explicit user feedback might be misleading

– Feedback providers may have various incentives

• Learning from implicit feedback is a better idea

– E.g. clicking on Web search results

• In large-scale setups, skewness of training data
is hard to detect

Real-world example

• Goal: find high-quality professionals on LinkedIn

• Idea: use recommendation data to train a model

– Whoever has recommendations is a positive example

– Is it a good idea? 

Not enough (clean) training data?

• Use existing labels as a guidance rather than
a directive

– In a semi-supervised clustering framework

• Or label more data! 

– With a little help from the crowd

Semi-supervised clustering

• Cluster unlabeled data D while taking labeled
data D* into account

• Construct clustering while maximizing
Mutual Information

– And keeping the number of clusters k constant

– is defined naturally over classes in D*

• Results better than those of classification

Bekkerman et al, ECML 2006

*~D

D~
)~;~I(*DD

Semi-supervised clustering (details)

• Define an empirical joint distribution P(D, D
*)

– P(d, d
) is a normalized similarity between d and d

• Define the joint between clusterings

– Where

• and are marginals

)~,~(*DDP
  ** ~,~

**),()~,~(dddd ddPddP

  ** ~~,~~ *

*
*

)~()~(
)~,~()~;~I(DdDd dPdP

ddPDD

)~(DP)~(*DP

Crowdsourcing labeled data

• Crowdsourcing is a tough business 

– People are not machines

• Any worker who can game the system
will game the system

• Validation framework + qualification tests
are a must

• Labeling a lot of data can be fairly expensive

How to label 1M instances

• Budget a month of work +
about $50,000

How to label 1M instances

• Hire a data annotation
contractor in your town

– Presumably someone you
know well enough

How to label 1M instances

• Offer the guy $10,000 for
one month of work

How to label 1M instances

• Construct a qualification test
for your job

• Hire 100 workers who pass it

– Keep their worker IDs

How to label 1M instances

• Explain to them the task,
make sure they get it

How to label 1M instances

• Offer them 4¢ per data
instance if they do it right

How to label 1M instances

• Your contractor will label
500 data instances a day

• This data will be used to
validate worker results

500

How to label 1M instances

• You’ll need to spot-check
the results

How to label 1M instances

• You’ll need to spot-check
the results

How to label 1M instances

• Each worker gets a daily
task of 1000 data instances

1000 1000 1000 1000 1000 1000 1000 1000

How to label 1M instances

• Some of which are already
labeled by the contractor

1000 1000 1000 1000 1000 1000 1000 1000

How to label 1M instances

• Check every worker’s result
on that validation set

How to label 1M instances

• Check every worker’s result
on that validation set

How to label 1M instances

• Fire the worst 50 workers

• Disregard their results

How to label 1M instances

• Hire 50 new ones

How to label 1M instances

• Repeat for a month (20
working days)

• 50 workers × 20 days ×
1000 data points a day × 4¢

Got 1M labeled instances, now what?

• Now go train your model 

• Rule of the thumb: heavier algorithms
produce better results

• Rule of the other thumb: forget about
super-quadratic algorithms

• Parallelization looks unavoidable

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

Example: k-means clustering

• An EM-like algorithm:

• Initialize k cluster centroids

• E-step: associate each data instance with the
closest centroid

– Find expected values of cluster assignments given
the data and centroids

• M-step: recalculate centroids as an average of
the associated data instances

– Find new centroids that maximize that expectation

Parallelizing k-means

Parallelizing k-means

Parallelizing k-means

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

Peer-to-peer (P2P) systems

• Millions of machines connected in a network

– Each machine can only contact its neighbors

• Each machine storing millions of data instances

– Practically unlimited scale 

• Communication is the bottleneck

– Aggregation is costly, broadcast is cheaper

• Messages are sent over a spanning tree

– With an arbitrary node being the root

k-means in P2P

• Uniformly sample k centroids over P2P

– Using a random walk method

• Broadcast the centroids

• Run local k-means on each machine

• Sample n nodes

• Aggregate local centroids of those n nodes

Datta et al, TKDE 2009

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

Virtual clusters

• Datacenter-scale clusters

– Hundreds of thousands of machines

• Distributed file system

– Data redundancy

• Cloud computing paradigm

– Virtualization, full fault tolerance, pay-as-you-go

• MapReduce is #1 data processing scheme

MapReduce

Mappers

Reducers

• Process in parallel → shuffle → process in
parallel

• Mappers output (key, value) records

– Records with the same key are sent to the
same reducer

k-means on MapReduce

• Mappers read data portions and centroids

• Mappers assign data instances to clusters

• Mappers compute new local centroids and
local cluster sizes

• Reducers aggregate local centroids (weighted
by local cluster sizes) into new global centroids

• Reducers write the new centroids

Panda et al, Chapter 2

Discussion on MapReduce

• MapReduce is not designed for iterative
processing

– Mappers read the same data again and again

• MapReduce looks too low-level to some people

– Data analysts are traditionally SQL folks 

• MapReduce looks too high-level to others

– A lot of MapReduce logic is hard to adapt

• Example: grouping documents by words

MapReduce wrappers

• Many of them are available

– At different levels of stability 

• Apache Pig is an SQL-like environment

– Group, Join, Filter rows, Filter columns (Foreach)

– Developed at Yahoo! Research

• DryadLINQ is a C#-like environment

– Developed at Microsoft Research

Olston et al, SIGMOD 2008

Yu et al, OSDI 2008

k-means in Apache Pig: input data

• Assume we need to cluster documents

– Stored in a 3-column table D:

• Initial centroids are k randomly chosen docs

– Stored in table C in the same format as above

Document Word Count

doc1 new 2

doc1 york 2

D_C = JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ;

PRODg = GROUP PROD BY (d, c);
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc;

SQR = FOREACH C GENERATE c, ic * ic AS ic
2;

SQRg = GROUP SQR BY c;
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc;

DOT_LEN = JOIN LEN_C BY c, DOT_PROD BY c;
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc;

SIMg = GROUP SIM BY d;
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

 




 
cw

w
c

dw
w
c

w
d

cd
i
iic

2
maxarg

D_C = JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ;

PRODg = GROUP PROD BY (d, c);
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc;

SQR = FOREACH C GENERATE c, ic * ic AS ic
2;

SQRg = GROUP SQR BY c;
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc;

DOT_LEN = JOIN LEN_C BY c, DOT_PROD BY c;
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc;

SIMg = GROUP SIM BY d;
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

 




 
cw

w
c

dw
w
c

w
d

cd
i
iic

2
maxarg

D_C = JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ;

PRODg = GROUP PROD BY (d, c);
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc;

SQR = FOREACH C GENERATE c, ic * ic AS ic
2;

SQRg = GROUP SQR BY c;
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc;

DOT_LEN = JOIN LEN_C BY c, DOT_PROD BY c;
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc;

SIMg = GROUP SIM BY d;
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

 




 
cw

w
c

dw
w
c

w
d

cd
i
iic

2
maxarg

D_C = JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ;

PRODg = GROUP PROD BY (d, c);
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc;

SQR = FOREACH C GENERATE c, ic * ic AS ic
2;

SQRg = GROUP SQR BY c;
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc;

DOT_LEN = JOIN LEN_C BY c, DOT_PROD BY c;
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc;

SIMg = GROUP SIM BY d;
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

 




 
cw

w
c

dw
w
c

w
d

cd
i
iic

2
maxarg

D_C = JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ;

PRODg = GROUP PROD BY (d, c);
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc;

SQR = FOREACH C GENERATE c, ic * ic AS ic
2;

SQRg = GROUP SQR BY c;
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc;

DOT_LEN = JOIN LEN_C BY c, DOT_PROD BY c;
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc;

SIMg = GROUP SIM BY d;
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

 




 
cw

w
c

dw
w
c

w
d

cd
i
iic

2
maxarg

k-means in Apache Pig: E-step

D_C = JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ;

PRODg = GROUP PROD BY (d, c);
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc;

SQR = FOREACH C GENERATE c, ic * ic AS ic
2;

SQRg = GROUP SQUA BY c;
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc;

DOT_LEN = JOIN LEN_C BY c, DOT_PROD BY c;
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc;

SIMg = GROUP SIM BY d;
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: M-step

D_C_W = JOIN CLUSTERS BY d, D BY d;

D_C_Wg = GROUP D_C_W BY (c, w);
SUMS = FOREACH D_C_Wg GENERATE c, w, SUM(id) AS sum;

D_C_Wgg = GROUP D_C_W BY c;
SIZES = FOREACH D_C_Wgg GENERATE c, COUNT(D_C_W) AS size;

SUMS_SIZES = JOIN SIZES BY c, SUMS BY c;
C = FOREACH SUMS_SIZES GENERATE c, w, sum / size AS ic ;

MapReduce job setup time

• In an iterative process, setting up a MapReduce
job at each iteration is costly

• Solution: forward scheduling

– Setup the next job before the previous completed

Panda et al, Chapter 2

Setup Process Tear down

Setup Process Tear down

Setup Process Tear down

Data

Data

Data

Data

k-means in DryadLINQ

Vector NearestCenter(Vector point, IQueryable<Vector> centers)
{

 var nearest = centers.First();
 foreach (var center in centers)
 if ((point - center).Norm() < (point - nearest).Norm())
 nearest = center;
 return nearest;
}

IQueryable<Vector> KMeansStep(IQueryable<Vector> vectors,
 IQueryable<Vector> centers)
{

 return vectors.GroupBy(vector => NearestCenter(vector, centers))
 .Select(g => g.Aggregate((x,y) => x+y) / g.Count());
}

Budiu et al, Chapter 3

DryadLINQ: k-means execution plan

Takeaways on MapReduce wrappers

• Machine learning in SQL is fairly awkward 

• DryadLINQ looks much more suitable

– Beta available at
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx

– Check out Chapter 3 for a Kinect application!!!

• Writing high-level code requires deep
understanding of low-level processes

http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

HPC clusters

• High Performance Computing clusters / blades /
supercomputers

– Thousands of cores

• Great variety of architectural choices

– Disk organization, cache, communication etc.

• Fault tolerance mechanisms are not crucial

– Hardware failures are rare

• Most typical communication protocol: MPI

– Message Passing Interface
Gropp et al, MIT Press 1994

Message Passing Interface (MPI)

• Runtime communication library

– Available for many programming languages
• MPI_Bsend(void* buffer, int size, int destID)

– Serialization is on you 
• MPI_Recv(void* buffer, int size, int sourceID)

– Will wait until receives it

• MPI_Bcast – broadcasts a message

• MPI_Barrier – synchronizes all processes

MapReduce vs. MPI

• MPI is a generic
framework

– Processes send
messages to other
processes

– Any computation
graph can be built

• Most suitable for the
master/slave model

k-means using MPI

• Slaves read data portions

• Master broadcasts centroids to slaves

• Slaves assign data instances to clusters

• Slaves compute new local centroids and
local cluster sizes

– Then send them to the master

• Master aggregates local centroids weighted
by local cluster sizes into new global centroids

Pednault et al, Chapter 4

Two features of MPI parallelization

• State-preserving processes

– Processes can live as long as the system runs

– No need to read the same data again and again

– All necessary parameters can be preserved locally

• Hierarchical master/slave paradigm

– A slave can be a master of other processes

– Could be very useful in dynamic resource allocation

• When a slave recognizes it has too much stuff to process

Pednault et al, Chapter 4

Takeaways on MPI

• Old, well established, well debugged

• Very flexible

• Perfectly suitable for iterative processing

• Fault intolerant

• Not that widely available anymore 

– An open source implementation: OpenMPI

– MPI can be deployed on Hadoop
Ye et al, CIKM 2009

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

Multicore

• One machine, up to dozens of cores

• Shared memory, one disk

• Multithreading as a parallelization scheme

• Data might not fit the RAM

– Use streaming to process the data in portions

– Disk access may be the bottleneck

• If it does fit, RAM access is the bottleneck

– Use uniform, small size memory requests
Tatikonda & Parthasarathy, Chapter 20

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

Graphics Processing Unit (GPU)

• GPU has become General-Purpose (GP-GPU)

• CUDA is a GP-GPU programming framework

– Powered by NVIDIA

• Each GPU consists of hundreds of multiprocessors

• Each multiprocessor consists of a few ALUs

– ALUs execute the same line of code synchronously

• When code branches, some multiprocessors stall

– Avoid branching as much as possible

Machine learning with GPUs

• To fully utilize a GPU, the data needs to fit in RAM

– This limits the maximal size of the data

• GPUs are optimized for speed

– A good choice for real-time tasks

• A typical usecase: a model is trained offline and
then applied in real-time (inference)

– Machine vision / speech recognition are example
domains

Coates et al, Chapter 18
Chong et al, Chapter 21

k-means clustering on a GPU

• Cluster membership assignment done on GPU:

– Centroids are uploaded to every multiprocessor

– A multiprocessor works on one data vector at a time

– Each ALU works on one data dimension

• Centroid recalculation is then done on CPU

• Most appropriate for processing dense data

• Scattered memory access should be avoided

• A multiprocessor reads a data vector while its
ALUs process a previous vector

Hsu et al, Chapter 5

Performance results

• 4 millions 8-dimensional vectors

• 400 clusters

• 50 k-means iterations

• 9 seconds!!!

Parallelization: platform choices

Platform Communication Scheme Data size

Peer-to-Peer TCP/IP Petabytes

Virtual Clusters MapReduce / MPI Terabytes

HPC Clusters MPI / MapReduce Terabytes

Multicore Multithreading Gigabytes

GPU CUDA Gigabytes

FPGA HDL Gigabytes

Field-programmable gate array (FPGA)

• Highly specialized hardware units

• Programmable in Hardware Description
Language (HDL)

• Applicable to training and inference

• Check out Chapter 7 for a hybrid parallelization:
multicore (coarse-grained) + FPGA (fine-grained)

Durdanovic et al, Chapter 7
Farabet et al, Chapter 19

How to choose a platform

• Obviously depending on the size of the data

– A cluster is a better option if data doesn’t fit in RAM

• Optimizing for speed or for throughput

– GPUs and FPGAs can reach enormous speeds

• Training a model / applying a model

– Training is usually offline

Thank You!

http://hunch.net/~large_scale_survey

Parallel Information-Theoretic
Co-Clustering

Bekkerman & Scholz, Chapter 13

1 0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 1

0 0 0 0 1 0 1 1 0

0 1 1 0 0 0 1 1 0

1 0 1 0 0 0 1 1 1

0 0 0 1 0 0 1 0 0

0 0 1 0 1 0 1 0 1

0 0 1 0 1 0 0 1 0

Illustration of Distributional Co-Clustering

3
3
3
3
4
5
2
4
3

3 1 5 1 4 1 5 6 4 30 



X

Y

2.306)(8 yP

1.303)(3 xP

Illustration of Distributional Co-Clustering

1 0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 1

0 0 0 0 1 0 1 1 0

0 1 1 0 0 0 1 1 0

1 0 1 0 0 0 1 1 1

0 0 0 1 0 0 1 0 0

0 0 1 0 1 0 1 0 1

0 0 1 0 1 0 0 1 0

3
3
3
3
4
5
2
4
3

3 1 5 1 4 1 5 6 4 30 



X

Y

301)(8,3 yxP

Illustration of Distributional Co-Clustering

1~x

2~x

3~x

1 0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 1

0 0 0 0 1 0 1 1 0

0 1 1 0 0 0 1 1 0

1 0 1 0 0 0 1 1 1

0 0 0 1 0 0 1 0 0

0 0 1 0 1 0 1 0 1

0 0 1 0 1 0 0 1 0

3
3
3
3
4
5
2
4
3

3 1 5 1 4 1 5 6 4 30 


1~y 2~y 3~y

 0 0 3

 4 10 15

Illustration of Distributional Co-Clustering

1~x

2~x

3~x

 1 1 1 3
3
3
3
4
5
2
4
3

30 


1~y 2~y 3~y

 1 1 1

 0 1 2

 1 1 2

 1 1 3

 0 1 1

 0 2 2

 0 2 1

 1,0,0)|~(3 xYP

Illustration of Distributional Co-Clustering

1~x

2~x

3~x

8

12

9

 4 10 15 30 


1~y 2~y 3~y

2 2 4

2 3 7

0 5 4

Mutual
Information


 Xx Yy

ypxp
yxpyxp

~~ ~~)~()~(
)~,~(log)~,~(

1.)~,~(22 yxP

 5,.25,.25.)~|~(1xYP

Information-Theoretic Co-Clustering

• Construct clusterings of X and Y by optimizing
Mutual Information

  
 


Xx YyYXYX ypxp

yxpyxpYX
~~ ~~

~,~~,~)~()~(
)~,~(log)~,~(maxarg~;~Imaxarg

Dhillon et al, KDD 2003

Two optimization strategies

• Both strategies:

– Randomly initialize clusterings of X and Y

– Alternate reclustering wrt and wrt

• Strategy 1: Centroid-based

– At iteration t, assign each x to cluster x with

– Compute for each new cluster x




)~|~()|~(minarg)(~ xYPxYPD tKLx

X~ Y~ X~Y~

~

)~|~()1(xYPt ~

“centroid”

 Sequential Co-Clustering

• For each x:

– Remove x from its original cluster

– For each cluster x:

• Compute the delta in the Mutual Information
if x is assigned to x

– Assign x to the cluster such that the delta is maximal

~

~

Sequential vs. centroid-based updates

Sequential vs. centroid-based updates

Theoretical results in a nutshell

• The centroid-based algorithm misses updates

• Sequential CC updates more aggressively & faster

• Theorem:
Sequential CC has a true subset of local optima
compared to centroid-based IT-CC

Results on small data sets

Dataset centroid sequential

acheyer 39.0  .6 46.1  .3

mgondek 61.3 1.5 63.4  1.1

sanders-r 56.1  .7 60.2  .4

20NG 54.2  .7 57.7  .2

Does the sequential strategy
work better on large sets?

From inherently sequential to parallel

• Objective function: 
 Xx Yy ypxp

yxpyxpYX
~~ ~~)~()~(

)~,~(log)~,~()~;~I(


Yy ypxp

yxpyxp
~~ 1

1
1)~()~(

)~,~(log)~,~(
Yy ypxp

yxpyxp
~~ 2

2
2)~()~(

)~,~(log)~,~(
Yy ypxp

yxpyxp
~~ 3

3
3)~()~(

)~,~(log)~,~(


Yy ypxp

yxpyxp
~~ 4

4
4)~()~(

)~,~(log)~,~(
Yy ypxp

yxpyxp
~~ 5

5
5)~()~(

)~,~(log)~,~(
Yy ypxp

yxpyxp
~~ 6

6
6)~()~(

)~,~(log)~,~(

Parallel sequential co-clustering

• Initialize clusters at random

• Split clusters to pairs

• Assign each pair to one machine

• “Shuffle” clusters in parallel

– Try moving each instance from one cluster to another

• Assign a different pair of clusters to each machine

• Repeat to cover all cluster pairs

How can we make sure that each cluster
pair is generated exactly once?

With minimal communication costs?

Tournament

0 1 2 3

7 6 5 4

0 7
1 6
2 5
3 4

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

Tournament

0 1 2 3

7 6 5 4

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

6 7
0 5
1 4
2 3

Tournament

6 0 1 2

7 5 4 3

6 7
0 5
1 4
2 3

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

Tournament

6 0 1 2

7 5 4 3

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

6 7
0 5
1 4
2 3
2 7
6 5
0 4
1 3

Tournament

5 6 0 1

7 4 3 2

5 7
6 4
0 3
1 2

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

6 7
0 5
1 4
2 3
2 7
6 5
0 4
1 3

Tournament

5 6 0 1

7 4 3 2

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

6 7
0 5
1 4
2 3
2 7
6 5
0 4
1 3

5 7
6 4
0 3
1 2
1 7
5 4
6 3
0 2

Tournament

4 5 6 0

7 3 2 1

4 7
5 3
6 2
0 1

0 7
1 6
2 5
3 4
3 7
0 6
1 5
2 4

6 7
0 5
1 4
2 3
2 7
6 5
0 4
1 3

5 7
6 4
0 3
1 2
1 7
5 4
6 3
0 2

Experimental Setup

• DataLoom:

– Parallelization of sequential co-clustering

– MPI-based implementation

• Centroid-based IT-CC:

– Implementation in MapReduce

• Double k-means:

– Co-clustering in Euclidean space

Overall costs per full iteration

 k : #clusters, m : #machines, v : #values in P(Y | X)

• Communication:
– centroid-based O(2m  k  |Y|) = O(m  k2)

– DataLoom O((k-1)  (v/2)) = O(k  v)

• In our experiments (many machines, sparse data):
 (sending centroids) 2m|Y|  v/2 (sending cluster)

• CPU cycles: O(k  v) for both centroid-based & DataLoom

~

~

~

Experimental results

• RCV1 dataset
– 800,000 docs

– 150,000 words

• Netflix (KDD Cup ‘07)

– 18,000 movies

– 480,000 users

112

• 55 2nd-level Reuters categories
• 800 document / 800 term clusters
• clustering without label
information
• choose the mode of each cluster

• Clustering binary rating matrix
• 800 movie / 800 user clusters
• for hold-out users: rank movies
• cluster-induced distribution:

Conclusion

• DataLoom: parallelization of sequential co-
clustering

• Theoretical result:

– Sequential updates superior for cluster updates

• Experimental results:

– Excellent clustering results on two large benchmarks

