Scaling Up Machine Learning

Parallel and Distributed Approaches

Ron Bekkerman, LinkedIn
Misha Bilenko, MSR
John Langford, YIR

http://hunch.net/~large_scale_survey

Outline

Introduction
Tree Induction

Break
Graphical Models

_.earning on GPUs

_Linear Learning

Conclusion

Ron
Misha

Misha

Jo

Jo

1N

1N

John

The book

e Cambridge Uni Press

SCAIL ING UP Due in November 2011
MA@ =I\NE e 21 chapters
LEARI\”NG ° Covering

FParallel and Distributed Approaches

— Platforms

— Algorithms

— Learning setups
— Applications

O 0 N O 1 & W N

Google

Microsoft

Research

Microsoft

Research

10 Carnegie Mellon
11 UClIrvine

University of California, [rvine

12
13

15
16
17
18
19
20
21

UNIVERSITY

Chapter contrlbutors

Lmkedﬂ [LABS"P]
14 YAaHoO! CORNELL

" UNIVEZRSITY

UNIVERSITY OF

\\’ASHINGTON

NN THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Go gle

UMASS

AMHERST

NI facebook

((’ NEW YORK UNIVERSITY ' EZ) Yale

MECLO St

SEQUL NATIONAL UNIVERSITY

Previous books

Mohammed J. Zaki
Ching-Tien Ho (Eds.)

Large-Scale (
Parallel =
Data Mining € ADVANCESIN &
Alex .-\IT}Frrilsn. DISTRIBUTEMB PA.MLEL
Pk I Lavain = © KowLeBeE DiscoveRy o

MINING VERY LARGE
DATABASES WITH
PARALLEL PROCESSING

LNAI State-of-the-Art Survey

i | A k 5 y "
] { \
A 4 J 4 i L] x
F, i |
/ i i : .'r] * 4
P ¥ i !
%
i ' ! b
] | ; \
/ \ \
! \

Hillol Kargupta and Philip Chan

Kluwer Academic Publishers
Boston/Dordrechit/T.ondon

Data hypergrowth: an example

e Reuters-21578: about 100000000

10K docs (ModApte)
Bekkerman et al, SIGIR 2001 10000000
e RCV1: about 807K docs
1000000
Bekkerman & Scholz, CIKM 2008
* LinkedIn job title data: 100000
about 100M docs
Bekkerman & Gavish, KDD 2011 10000 -

2000 2004 2008 2012

New age of big data

 The world has gone mobile

— 5 billion cellphones produce daily data

* Social networks have gone online
— Twitter produces 200M tweets a day

* Crowdsourcing is the reality

— Labeling of 100,000+ data instances is doable
* Within a week ©

Size matters

* One thousand data instances

* One million data instances

* One billion data instances

* One trillion data instances

Those are not different numbers,
those are different mindsets ©

One thousand data instances

e Will process it manually within a day (a week?)

— No need in an automatic approach

* We shouldn’t publish main results on datasets
of such size ©

One million data instances

Currently, the most active zone
Can be crowdsourced

Can be processed by a quadratic algorithm
— Once parallelized

1M data collection cannot be too diverse

— But can be too homogenous

Preprocessing / data probing is crucial

Big dataset cannot be too sparse

* 1M data instances cannot belong to 1M classes

— Simply because it’s not practical to have 1M classes ©

* Here’s a statistical experiment, in text domain:
— 1M documents
— Each document is 100 words long

— Randomly sampled from a unigram language model
* No stopwords

— 245M pairs have word overlap of 10% or more

e Real-world datasets are denser than random

Can big datasets be too dense?

3746554337.jpg 7264545727 .jpg @
.,
8374565642.jpg 6255434389.jpg @
o,
2648697083.jpg 5039287651.jpg @
o,
3045938173.jpg 8871536482.jpg
-
4596867462.jpg 2037582194.jpg

Real-world example

Enron Email Dataset

This dataset was collected and prepared by the CALO Project (A Cognitive Assistant that Learns and Organizes). It contains data from about 150 users, mostly senior management of Enron, org
tolders. The corpus contains a total of about 0.3M messages. This data was originally made public, and posted to the web, by the Federal Energy Regulatory Commission during its investigation.

The email dataset was later purchased by Leslie Kaelbling at MIT, and turmed out to have a munber of ntegritv problems. A number of folks at SRI. notably Melinda Gervasio, worked hard to cc
problems, and it is thanks to them (not me) that the dataset is available. The dataset here does not include attachments, and some messages have been deleted "as part of a redaction effort due to 1
from affected employvees". Invalid email addresses were converted to something of the form user @ enron.com whenever possible (ie.. recipient is specified in some parse-able format like "Doe. Jc
"Mary K. Smith") and to no_address/@ enron_com when no recipient was specified.

I get a number of questions about this corpus each week, which I am unable to answer, mostly because they deal with preparation issues and such that [just don't know about. If you ask me a qu
don't answer, please don't feel slighted.

I am distributing this dataset as a resource for researchers who are interested in improving current email tools, or understanding how email is currently used. This data is valuable; to my knowledge
otily substantial collection of "real" email that is public. The reason other datasets are not public is because of privacy concerns. In using this dataset, please be sensitive to the privacy of the people
(and remember that manyv of these people were certainly not involved in anv of the actions which precipitated the investigation.)

¢ lmrelr 2200 et and the Amewe 22000 erimef-dnbaent are no longer being distributed. If vou are using this dataset for vour worle, vou are requested to replace it
newer version of the dataset below, or make the the appropriate changes to vour local copv. A total of four messages have been removed since the original version of the dataset.
¢ August 21, 2009 Version of dataset (about 423Mb, tarred and gripped).

There are also at least two on-line databases that allow vou to search the data, at Enronemail com and UCB

Research uses of the dataset
This is a partial and poorly maintained list. If I've left vour work out, don't take it personallv, and feel free to send me a pointer and’'or description.
+ A paper describing the Enron data was presented at the 2004 CEAS conference.

+ Some experiments associated with this data are described on Ron Belkdkerman's home page.
+ A social-network analysis of the data, including "useful mappings between the MD2 digest of the email bodies and such things as authors_recipients_ etc”, is available from Andres Corrada-

(Near) duplicate detection

Bekkerman et al, KDD 2009

T -
| - |
L[- |

One billion data instances

Web-scale

Guaranteed to contain data in different formats
— ASCI| text, pictures, javascript code, PDF documents...

Guaranteed to contain (near) duplicates
Likely to be badly preprocessed ©
Storage is an issue

One trillion data instances

* Beyond the reach of the modern technology

* Peer-to-peer paradigm is (arguably) the only
way to process the data

» Data privacy / inconsistency / skewness issues

— Can’t be kept in one location
— Is intrinsically hard to sample

A solution to data privacy problem

Xiang et al, Chapter 16

* n machines with » private
datasets

— All datasets intersect
— The intersection is shared

* Each machine learns a
separate model

* Models get consistent
over the data intersection

 Check out Chapter 16 to see this approach
applied in a recommender system!

So what model will we learn?

Supervised model?
Unsupervised model?

Semi-supervised model?

Obviously, depending on the application ©
— But also on availability of labeled data
— And its trustworthiness!

Size of training data

e Say you have 1K labeled and 1M unlabeled
examples

— Labeled/unlabeled ratio: 0.1%
— Is 1K enough to train a supervised model?

* Now you have 1M labeled and 1B unlabeled
examples

— Labeled/unlabeled ratio: 0.1%
— Is 1M enough to train a supervised model?

Skewness of training data

Usually, training data comes from users
Explicit user feedback might be misleading
— Feedback providers may have various incentives

Learning from implicit feedback is a better idea
— E.g. clicking on Web search results

In large-scale setups, skewness of training data
is hard to detect

Real-world example

* Goal: find high-quality professionals on LinkedIn
 |dea: use recommendation data to train a model

— Whoever has recommendations is a positive example

Vice Presidential Nominee
John McCain 2008 [

“She is bright and gutsy and. guys. SHE is going to help McCain win

Embrace her!

TraciGregory™ September 13, 2008
Top qualities: Personable, High Integrty, Creative
[3rd] Traci Gregory

hired Sarah as a Sincere, Moral & Ethical Semice to the people of the US and the world
in 2008

— Is it a good idea? ©

Not enough (clean) training data?

* Use existing labels as a guidance rather than
a directive

— In a semi-supervised clustering framework

* Or label more data! ©
— With a little help from the crowd

Semi-supervised clustering

Bekkerman et al, ECML 2006

* Cluster unlabeled data D while taking labeled
data D™ into account

* Construct clustering thile maximizing
Mutual Information
— And keeping the number of clusters k constant
— Dis defined naturally over classes in D*

e Results better than those of classification

Semi-supervised clustering (details)

ICD)=n o 550

 Define an empirical joint distribution P(D, D")

*

— P(d, d”) is a normalized similarity between d and d

* Define the joint between clusterings DD
— Where ak :Zﬁ Jeﬂ‘Rdd)}()
. RD and are mz;rginals

Crowdsourcing labeled data

Crowdsourcing is a tough business ©

— People are not machines

Any worker who can game the system
will game the system

Validation framework + qualification tests
are a must

Labeling a lot of data can be fairly expensive

How to label 1M instances

 Budget a month of work +
about S50,000

How to label 1M instances

 Hire a data annotation

contractor in your town
’ ! — Presumably someone you

know well enough

How to label 1M instances

« Offer the guy $10,000 for

LiJ one month of work

How to label 1M instances

e Construct a qualification test
for your job

* Hire 100 workers who pass it

A
RARRRA R R

How to label 1M instances

* Explain to them the task,

(Y .
%} make sure they get it
/I \

$evvsves

S W A WY A W A W A W A W N U A !

How to label 1M instances

» Offer them 4¢ per data
instance if they do it right

®
LELESE 3

How to label 1M instances

* Your contractor will label

% 500 data instances a day

 This data will be used to
validate worker results

RARRRA R R

How to label 1M instances

* You'll need to spot-check
the results

®
RARRRA R R

How to label 1M instances

* You'll need to spot-check
the results

R
RARRRA R R

How to label 1M instances

* Each worker gets a daily
task of 1000 data instances

#

How to label 1M instances

* Some of which are already

How to label 1M instances

* Check every worker’s result
on that validation set

R
RARRRA R R

How to label 1M instances

* Check every worker’s result
on that validation set

R
RARRRRRR

How to label 1M instances

* Fire the worst 50 workers
e Disregard their results

R
RARRRRRR

How to label 1M instances

e Hire 50 new ones

R
RARRRARR

How to label 1M instances

* Repeat for a month (20

& working days)
50 workers x 20 days x

1000 data points a day x 4¢

LEL GG ¢

Got 1M labeled instances, now what?

* Now go train your model ©

* Rule of the thumb: heavier algorithms
produce better results

* Rule of the other thumb: forget about
super-quadratic algorithms

 Parallelization looks unavoidable

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

Example: k-means clustering

* An EM-like algorithm:
e |nitialize k cluster centroids

* E-step: associate each data instance with the
closest centroid

— Find expected values of cluster assignments given
the data and centroids

* M-step: recalculate centroids as an average of
the associated data instances

— Find new centroids that maximize that expectation

Parallelizing k-means

Parallelizing k-means

Parallelizing k-means

ARARE

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

Peer-to-peer (P2P) systems

Millions of machines connected in a network

— Each machine can only contact its neighbors

Each machine storing millions of data instances
— Practically unlimited scale ©

Communication is the bottleneck

— Aggregation is costly, broadcast is cheaper

Messages are sent over a spanning tree
— With an arbitrary node being the root

k-means in P2P

Datta et al, TKDE 2009

Uniformly sample & centroids over P2P
— Using a random walk method

Broadcast the centroids

Run local k-means on each machine
Sample n nodes

Aggregate local centroids of those n nodes

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

Virtual clusters

Datacenter-scale clusters

— Hundreds of thousands of machines

Distributed file system
— Data redundancy

Cloud computing paradigm

— Virtualization, full fault tolerance, pay-as-you-go

MapReduce is #1 data processing scheme

MapReduce

e

* Process in parallel - shuffle & process in
parallel

Mappers

Reducers

 Mappers output (key, value) records

— Records with the same key are sent to the
same reducer

k-means on MapReduce

Panda et al, Chapter 2

Mappers read data portions and centroids

Mappers assign data instances to clusters

Mappers compute new local centroids and
ocal cluster sizes

Reducers aggregate local centroids (weighted
oy local cluster sizes) into new global centroids

Reducers write the new centroids

Discussion on MapReduce

 MapReduce is not designed for iterative
processing

— Mappers read the same data again and again
* MapReduce looks too low-level to some people
— Data analysts are traditionally SQL folks ©

 MapReduce looks too high-level to others

— A lot of MapReduce logic is hard to adapt
* Example: grouping documents by words

MapReduce wrappers

* Many of them are available
— At different levels of stability ©

* Apache Pigis an SQL-like environment

— Group, Join, Filter rows, Filter columns (Foreach)

— Developed at Yahoo! Research
Olston et al, SIGMOD 2008

* DryadLINQ is a C#-like environment

— Developed at Microsoft Research
Yu et al, OSDI 2008

k-means in Apache Pig: input data

e Assume we nheed to cluster documents

— Stored in a 3-column table D:

N N

docl
docl york 2

* |nitial centroids are X randomly chosen docs

— Stored in table C in the same format as above

k-means in Apache Pig: E-step

D_C=JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD, = GROUP PROD BY (d, c);
DOT,

= ¢/=arg)

LEN |

y dXc;

DOT!
SIM = FOREACH DOT_LEN GENERATE d, ¢, dXc / len;

SIM, = GROUP SIM BY d
CLUSTERS = FOREACH SIM, GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

D_C=JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD, = GROUP PROD BY (d, c);
DOT,

sar| G —AT Z 1

LEN |

DOT!
SIM = FOREACH DOT_LEN GENERATE d, ¢, dXc / len;

SIM, = GROUP SIM BY d
CLUSTERS = FOREACH SIM, GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

D_C=JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD, = GROUP PROD BY (d, c);
DOT,

= ¢/=arg)

LEN |

c’

DOT!
SIM = FOREACH DOT_LEN GENERAT™® -

SIM, = GROUP SIM BY d
CLUSTERS = FOREACH SIM, GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

D_C=JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD, = GROUP PROD BY (d, c);
DOT,

sar| G —AT Z)

LEN |

y dXc;

c’

DOT
SIM = FOREACH DOT_LEN GENERA

d. c, dXc/ le

SIM, = GROUP SIM BY d;
CLUSTERS = FOREACH SIM, GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step

D_C=JOIN C BY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD, = GROUP PROD BY (d, c);
DOT,

SQR
san Gl

LEN |

DOT!
SIM = FOREACH DOT_LEN GENERATE d, ¢, dXc / len;

SIM, = GROUP SIM BY d
CLUSTERS = FOREACH SIM, GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: E-step
BY w, D BY w

PRODBEREACH D_C GENERATE d, c, i, * i, AS i, ;
PROD, ROD BY (d, ¢);
DOT._PROBumds@REACH PROD, GENERATE d, ¢, SUM(i,j,) AS dXc;

SQR = C GENERATE c,i. *i AS?;
SQR QUA BY c

e ;
g ;
LEN_C ~SaRFACH SQR, GENERATE c, SQRT(SUM(i ?)) AS len;

N_C BY c, DOT_PROD BY c;
OT_LEN GENERATE d, c, dXc / len ;

DOT LEN
SIM = : P

>IM BY d;
OREACH S/M , GENERATE TOP(1, 2, SIM);

k-means in Apache Pig: M-step

D_C_W, GENERATE c, w, SUM(i,) AS sum;

D_C_W,, _C_W BY ¢;
SIZES = FOR®MmewD_C_W, GENERATE ¢, COUNT(D_C_W) AS size;
SUMS SIZES "l:lll’lZES BY ¢, SUMS BY c;

C = FOREACH S®W75_SIZES GENERATE ¢, w, sum / size ASi_;

MapReduce job setup time

Panda et al, Chapter 2

* |n an iterative process, setting up a MapReduce
job at each iteration is costly

e Solution: forward scheduling
— Setup the next job before the previous completed

Setup | Process | Tear down

Data | Data
\ 4

Setup | Process | Tear down

Data Data

Setup | Process | Tear down

k-means in DryadLINQ

Budiu et al, Chapter 3

Vector NearestCenter(Vector point, IQueryable<Vector> centers)

{
var nearest = centers.First();

foreach (var center in centers)
if ((point - center).Norm() < (point - nearest).Norm())
nearest = center;

return nearest;
}

IQueryable<Vector> KMeansStep(lQueryable<Vector> vectors,
|Queryable<Vector> centers)

return vectors.GroupBy(vector =>(earestCenter(vector, centers
Select(g => g.Aggregatellx,y) => x+yJ/ g.Count(

{

DryadLINQ: k-means execution plan

Vectors
Initial Centers '

]
Compute local nearest cente v
Group on center

3508 -

Compute nearest center
Group on center = |[ter 1
Compute new centers 2 g S

Merge new centers

Takeaways on MapReduce wrappers

* Machine learning in SQL is fairly awkward ©

DryadLINQ looks much more suitable
— Beta available at

http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-ling-to-hpc-beta-2.aspx

— Check out Chapter 3 for a Kinect application!!!

Writing high-level code requires deep
understanding of low-level processes

http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

HPC clusters

High Performance Computing clusters / blades /

supercomputers

— Thousands of cores

Great variety of architectural choices

— Disk organization, cache, communication etc.

Fault tolerance mechanisms are not crucial

— Hardware failures are rare

Most typical communication protocol: MPI

— Message Passing Interface

Gropp et al, MIT Press 1994

Message Passing Interface (MPI)

* Runtime communication library

— Available for many programming languages
* MPI Bsend(void* buffer, int size, int destlID)

— Serialization is on you ©
* MPI Recv(void* buffer, int size, int sourcelD)

— Will wait until receives it
- MPI Bcast — broadcasts a message

- MPI Barrier — Synchronizes all processes

MapReduce vs. MPI

“oe
“oe
“oe

* MPIlis a generic
framework

— Processes send
messages to other
processes

— Any computation
graph can be built

 Most suitable for the
master/slave model

k-means using MPI

Pednault et al, Chapter 4

Slaves read data portions
Master broadcasts centroids to slave
Slaves assign data instances to clusters

Slaves compute new local centroids and
local cluster sizes
— Then send them to the master

Master aggregates local centroids weighted
by local cluster sizes into new global centroids

Two features of MPI parallelization

Pednault et al, Chapter 4
e State-preserving processes
— Processes can live as long as the system runs
— No need to read the same data again and again
— All necessary parameters can be preserved locally

* Hierarchical master/slave paradigm

— A slave can be a master of other processes

— Could be very useful in dynamic resource allocation
* When a slave recognizes it has too much stuff to process

Takeaways on MP]

Old, well established, well debugged

Very flexible

Perfectly suitable for iterative processing

Fault intolerant

Not that widely available anymore ®

— An open source implementation: OpenMPI

— MPI can be deployed on Hadoop

Ye et al, CIKM 2009

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

Multicore

One machine, up to dozens of cores
Shared memory, one disk

Multithreading as a parallelization scheme
Data might not fit the RAM

— Use streaming to process the data in portions
— Disk access may be the bottleneck

If it does fit, RAM access is the bottleneck

— Use uniform, small size memory requests
Tatikonda & Parthasarathy, Chapter 20

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

Graphics Processing Unit (GPU)

GPU has become General-Purpose (GP-GPU)

CUDA is a GP-GPU programming framework

— Powered by NVIDIA

Each GPU consists of hundreds of multiprocessors
Each multiprocessor consists of a few ALUs

— ALUs execute the same line of code synchronously

When code branches, some multiprocessors stall
— Avoid branching as much as possible

Machine learning with GPUs

* To fully utilize a GPU, the data needs to fit in RAM

— This limits the maximal size of the data

* GPUs are optimized for speed

— A good choice for real-time tasks

* A typical usecase: a model is trained offline and
then applied in real-time (inference)

— Machine vision / speech recognition are example

domains
Coates et al, Chapter 18

Chong et al, Chapter 21

k-means clustering on a GPU

Hsu et al, Chapter 5
Cluster membership assignment done on GPU:
— Centroids are uploaded to every multiprocessor
— A multiprocessor works on one data vector at a time
— Each ALU works on one data dimension

Centroid recalculation is then done on CPU
Most appropriate for processing dense data
Scattered memory access should be avoided

A multiprocessor reads a data vector while its
ALUs process a previous vector

Performance results

4 millions 8-dimensional vectors
e 400 clusters
e 50 k-means iterations

e 9 seconds!!!

Parallelization: platform choices

m Communication Scheme |Data size

Peer-to-Peer TCP/IP Petabytes
Virtual Clusters MapReduce / MPI Terabytes
HPC Clusters MPI / MapReduce Terabytes
Multicore Multithreading Gigabytes
GPU CUDA Gigabytes

FPGA HDL Gigabytes

Field-programmable gate array (FPGA)

* Highly specialized hardware units

* Programmable in Hardware Description
language (HDL)

* Applicable to training and inference

Durdanovic et al, Chapter 7
Farabet et al, Chapter 19

* Check out Chapter 7 for a hybrid parallelization:
multicore (coarse-grained) + FPGA (fine-grained)

How to choose a platform

* Obviously depending on the size of the data
— A cluster is a better option if data doesn’t fit in RAM

* Optimizing for speed or for throughput

— GPUs and FPGAs can reach enormous speeds
* Training a model / applying a model

— Training is usually offline

Thank You!

http://hunch.net/~large_scale_survey

Parallel Information-Theoretic
Co-Clustering

Bekkerman & Scholz, Chapter 13

lllustration of Distributional Co-Clustering

2

Y

MM nmnstina < oo
QI NHN|H| OO H|O|H|O |
S| O YN AN AH|[O|O|H| 0O
QOO A H| A H| 9| O | W10
QIO N| Q| Q||| OO
O 9| O 9| Q|00 H| N[
QIO Q| Q| Q|| H|O|O| ™
~N | Q| Q|| H|H|O|H|H|W1
QIO Q| O |||
~N|NH| Q||| || S|O| M

N

X

lllustration of Distributional Co-Clustering

R9)=9%3 52

| O NN N[OO
Q| O NN 9|9 H|O
Q| O QI Q| Q| S| S| O
Q| - SN | OQO|IQC|OCO| N
Q| O QIO Q||| O
| O O N|NH|O| N
Q| O Q| 4| Q||| O
N | QIO H|O|O| O
X

> 31514156

lllustration of Distributional Co-Clustering

wWhNUDWWWWM

\.
2315141564

w
o

lllustration of Distributional Co-Clustering

w WM

RY|»)=00])

W hr NV W

lllustration of Distributional Co-Clustering

RY)=A25255

Mutual
Information

30

Information-Theoretic Co-Clustering

* Construct clusterings of X and Y by optimizing
Mutual Information

ar&)ﬂ@fi):ar%g%ﬁxﬁlo%%

Two optimization strategies

* Both strategies:

— Randomly initialize clusterings of Xand Y
— Alternate reclustering prt Yand ert X

e Strategy 1: Centroid-based
Dhillon et al, KDD 2003

— At iteration t, assign each x to cluster x with

AtV

— Compute NH)(H@ for each new cluster X

Sequential Co-Clustering

* For each x:
— Remove x from its original cluster

— For each cluster x:

 Compute the delta in the Mutual Information
if x is assigned to x

— Assign x to the cluster such that the delta is maximal

Sequential vs. centroid-based updates

Sequential vs. centroid-based updates

Theoretical results in a nutshell

* The centroid-based algorithm misses updates

e Sequential CC updates more aggressively & faster

e Theorem:

Sequential CC has a true subset of local optima
compared to centroid-based IT-CC

Results on small data sets

Dataset centroid sequential
acheyer 39.0+ .6 46.1 + .3
mgondek 61.3£1.5 63.4+1.1
sanders-r 56.1+.7 60.2 + .4
20NG 54.2+.7 57.7 £ .2

Does the sequential strategy
work better on large sets?

From inherently sequential to parallel

* Objective function: I@Ez@%ﬁ%@lo%%:
QEPogiSs > plogids > plogleil +
ol > e ploghtids it ploghta,

Parallel sequential co-clustering

* |nitialize clusters at random
e Split clusters to pairs
* Assign each pair to one machine

“Shuffle” clusters in parallel
— Try moving each instance from one cluster to another

* Assign a different pair of clusters to each machine

* Repeat to cover all cluster pairs

How can we make sure that each cluster
pair is generated exactly once?

With minimal communication costs?

07
16
25
34
37
06
15
24

Tournament

07
16
25
34
37
06
15
24

Tournament

67
05
14
23

07
16
25
34
37
06
15
24

Tournament

67
05
14
23

Tournament

Tournament

Tournament

Tournament

Experimental Setup

* Dataloom:
— Parallelization of sequential co-clustering
— MPI-based implementation

* Centroid-based IT-CC:
— Implementation in MapReduce

* Double k-means:
— Co-clustering in Euclidean space

Overall costs per full iteration

k : #iclusters, m : #machines, v : #values in P(Y

* Communication:
— centroid-based O(@2m -k -|Y) = O(m -k?)
— Dataloom O((k-1) - (v/2)) = O0(k -v)

* |In our experiments (many machines, sparse data):
(sending centroids) 2m| Y| ~V/2 (sending cluster)

* CPU cycles: O(k . V) for both centroid-based & DataLoom

precision

Experimental results

RCV1 dataset
— 800,000 docs
— 150,000 words

e 55 2"d-level| Reuters categories
e 800 document / 800 term clusters

e clustering without label
information
¢ choose the mode of each cluster

06
055 / - | =-@=IT-CC
== DatalL.oom
== double k-means

1 2 3 4 5 6 7 8 9 10
clustering iteration

e Netflix (kDD Cup ‘07)
— 18,000 movies

e 800 movie / 800 user clusters
e for hold-out users: rank movies

e cluster-induced distribution:

AUC

0.71r

0.7¢

0.69

p(Z,9)
x,y) = plx) - C— =
q(z,y) == p(x) - p(y) p(@) (@)
© A =@=IT-CC
== DatalLoom
=$¢=double k-means
"""""" = = = popularity 1

1 2 3 4 5 6 7 8 9
clustering iteration

112

Conclusion

* Dataloom: parallelization of sequential co-
clustering

* Theoretical result:
— Sequential updates superior for cluster updates

* Experimental results:
— Excellent clustering results on two large benchmarks

