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The book 

• Cambridge Uni Press 

• Due in November 2011 

• 21 chapters 

• Covering 

– Platforms 

– Algorithms 

– Learning setups 

– Applications 
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Data hypergrowth: an example 

• Reuters-21578: about 
10K docs (ModApte) 

 

• RCV1: about 807K docs 

 

• LinkedIn job title data: 
about 100M docs 

Bekkerman et al, SIGIR 2001 

Bekkerman & Scholz, CIKM 2008 

Bekkerman & Gavish, KDD 2011 



New age of big data 

• The world has gone mobile 

– 5 billion cellphones produce daily data 

• Social networks have gone online 

– Twitter produces 200M tweets a day 

• Crowdsourcing is the reality 

– Labeling of 100,000+ data instances is doable 

• Within a week  



Size matters 

• One thousand data instances 

• One million data instances 

• One billion data instances 

• One trillion data instances 
 

Those are not different numbers,        
those are different mindsets  



One thousand data instances 

• Will process it manually within a day (a week?) 

– No need in an automatic approach 

• We shouldn’t publish main results on datasets 
of such size  



One million data instances 

• Currently, the most active zone 

• Can be crowdsourced 

• Can be processed by a quadratic algorithm 

– Once parallelized 

• 1M data collection cannot be too diverse 

– But can be too homogenous 

• Preprocessing / data probing is crucial 

 



Big dataset cannot be too sparse 

• 1M data instances cannot belong to 1M classes 

– Simply because it’s not practical to have 1M classes  

• Here’s a statistical experiment, in text domain: 

– 1M documents 

– Each document is 100 words long 

– Randomly sampled from a unigram language model 

• No stopwords 

– 245M pairs have word overlap of 10% or more 

• Real-world datasets are denser than random 



Can big datasets be too dense? 

3746554337.jpg 

8374565642.jpg 

2648697083.jpg 

7264545727.jpg 

6255434389.jpg 

5039287651.jpg 

3045938173.jpg 

4596867462.jpg 

8871536482.jpg 

2037582194.jpg 



Real-world example 



(Near) duplicate detection 
Bekkerman et al, KDD 2009 



One billion data instances 

• Web-scale 

• Guaranteed to contain data in different formats 

– ASCII text, pictures, javascript code, PDF documents… 

• Guaranteed to contain (near) duplicates 

• Likely to be badly preprocessed  

• Storage is an issue 



One trillion data instances 

• Beyond the reach of the modern technology 

• Peer-to-peer paradigm is (arguably) the only 
way to process the data 

• Data privacy / inconsistency / skewness issues 

– Can’t be kept in one location 

– Is intrinsically hard to sample 



A solution to data privacy problem  
• n machines with n private 

datasets 

– All datasets intersect 

– The intersection is shared 

• Each machine learns a 
separate model 

• Models get consistent 
over the data intersection 

Xiang et al, Chapter 16 
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• Check out Chapter 16 to see this approach 
applied in a recommender system! 



So what model will we learn? 

• Supervised model? 

• Unsupervised model? 

• Semi-supervised model? 

 

• Obviously, depending on the application  

– But also on availability of labeled data 

– And its trustworthiness! 



Size of training data 

• Say you have 1K labeled and 1M unlabeled 
examples 

– Labeled/unlabeled ratio: 0.1% 

– Is 1K enough to train a supervised model? 

• Now you have 1M labeled and 1B unlabeled 
examples 

– Labeled/unlabeled ratio: 0.1% 

– Is 1M enough to train a supervised model? 



Skewness of training data  

• Usually, training data comes from users 

• Explicit user feedback might be misleading 

– Feedback providers may have various incentives 

• Learning from implicit feedback is a better idea 

– E.g. clicking on Web search results 

 

• In large-scale setups, skewness of training data 
is hard to detect 



Real-world example 

• Goal: find high-quality professionals on LinkedIn 

• Idea: use recommendation data to train a model 

– Whoever has recommendations is a positive example 

 

 

 

 

 

 

– Is it a good idea?  



Not enough (clean) training data? 

• Use existing labels as a guidance rather than 
a directive 

– In a semi-supervised clustering framework 

•  Or label more data!  

– With a little help from the crowd 



Semi-supervised clustering 

• Cluster unlabeled data D while taking labeled 
data D* into account 

• Construct clustering      while maximizing 
Mutual Information                  

– And keeping the number of clusters k constant 

–       is defined naturally over classes in D* 

• Results better than those of classification 

Bekkerman et al, ECML 2006 
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Semi-supervised clustering (details) 

 

 

• Define an empirical joint distribution P(D, D
*) 

– P(d, d
*) is a normalized similarity between d and d* 

• Define the joint between clusterings 

– Where 

•             and              are marginals 
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Crowdsourcing labeled data 

• Crowdsourcing is a tough business  

– People are not machines 

• Any worker who can game the system       
will game the system 

• Validation framework + qualification tests 
are a must 

• Labeling a lot of data can be fairly expensive 



How to label 1M instances 

• Budget a month of work + 
about $50,000 



How to label 1M instances 

• Hire a data annotation 
contractor in your town 

– Presumably someone you 
know well enough 



How to label 1M instances 

• Offer the guy $10,000 for 
one month of work 



How to label 1M instances 

• Construct a qualification test 
for your job 

• Hire 100 workers who pass it 

– Keep their worker IDs 



How to label 1M instances 

• Explain to them the task, 
make sure they get it 



How to label 1M instances 

• Offer them 4¢ per data 
instance if they do it right 



How to label 1M instances 

• Your contractor will label 
500 data instances a day 

• This data will be used to 
validate worker results 

500 



How to label 1M instances 

• You’ll need to spot-check 
the results 



How to label 1M instances 

• You’ll need to spot-check 
the results 

 



How to label 1M instances 

• Each worker gets a daily 
task of 1000 data instances 
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How to label 1M instances 

• Some of which are already 
labeled by the contractor 

 

1000 1000 1000 1000 1000 1000 1000 1000 



How to label 1M instances 

• Check every worker’s result 
on that validation set 

 



How to label 1M instances 

• Check every worker’s result 
on that validation set 

 



How to label 1M instances 

• Fire the worst 50 workers 

• Disregard their results 



How to label 1M instances 

• Hire 50 new ones 



How to label 1M instances 

• Repeat for a month (20 
working days) 

• 50 workers × 20 days × 
1000 data points a day × 4¢ 



Got 1M labeled instances, now what? 

• Now go train your model  

• Rule of the thumb: heavier algorithms 
produce better results 

• Rule of the other thumb: forget about 
super-quadratic algorithms 

 

• Parallelization looks unavoidable 



Parallelization: platform choices 

Platform Communication Scheme Data size 

Peer-to-Peer TCP/IP Petabytes 

Virtual Clusters MapReduce / MPI Terabytes 

HPC Clusters MPI / MapReduce Terabytes 

Multicore Multithreading Gigabytes 

GPU CUDA Gigabytes 

FPGA HDL Gigabytes 



Example: k-means clustering 

• An EM-like algorithm: 

• Initialize k cluster centroids 

• E-step: associate each data instance with the 
closest centroid 

– Find expected values of cluster assignments given 
the data and centroids 

• M-step: recalculate centroids as an average of 
the associated data instances 

– Find new centroids that maximize that expectation 



Parallelizing k-means 



Parallelizing k-means 



Parallelizing k-means 
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Peer-to-peer (P2P) systems 

• Millions of machines connected in a network 

– Each machine can only contact its neighbors 

• Each machine storing millions of data instances 

– Practically unlimited scale  

• Communication is the bottleneck 

– Aggregation is costly, broadcast is cheaper 

• Messages are sent over a spanning tree 

– With an arbitrary node being the root 



k-means in P2P 

• Uniformly sample k centroids over P2P 

– Using a random walk method 

• Broadcast the centroids 

• Run local k-means on each machine 

• Sample n nodes 

• Aggregate local centroids of those n nodes 

Datta et al, TKDE 2009 



Parallelization: platform choices 
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Virtual clusters 

• Datacenter-scale clusters 

– Hundreds of thousands of machines 

• Distributed file system 

– Data redundancy 

• Cloud computing paradigm 

– Virtualization, full fault tolerance, pay-as-you-go 

• MapReduce is #1 data processing scheme 

 



MapReduce 

Mappers 

Reducers 

• Process in parallel → shuffle → process in 
parallel 

• Mappers output (key, value) records 

– Records with the same key are sent to the 
same reducer 



k-means on MapReduce 

• Mappers read data portions and centroids 

• Mappers assign data instances to clusters 

• Mappers compute new local centroids and 
local cluster sizes 

• Reducers aggregate local centroids (weighted 
by local cluster sizes) into new global centroids 

• Reducers write the new centroids 

Panda et al, Chapter 2 



Discussion on MapReduce 

• MapReduce is not designed for iterative 
processing 

– Mappers read the same data again and again 

• MapReduce looks too low-level to some people 

– Data analysts are traditionally SQL folks  

• MapReduce looks too high-level to others 

– A lot of MapReduce logic is hard to adapt 

• Example: grouping documents by words 



MapReduce wrappers 

• Many of them are available 

– At different levels of stability  

• Apache Pig is an SQL-like environment 

– Group, Join, Filter rows, Filter columns (Foreach) 

– Developed at Yahoo! Research 

 

• DryadLINQ is a C#-like environment 

– Developed at Microsoft Research 

Olston et al, SIGMOD 2008 

Yu et al, OSDI 2008 



k-means in Apache Pig: input data 

• Assume we need to cluster documents 

– Stored in a 3-column table D: 

 

 
 

 

• Initial centroids are k randomly chosen docs 

– Stored in table C in the same format as above 

Document Word Count 

doc1 new 2 

doc1 york 2 



D_C = JOIN C BY w, D BY w; 
PROD = FOREACH D_C GENERATE d, c, id * ic AS idic ; 
 

PRODg = GROUP PROD BY (d, c); 
DOT_PROD = FOREACH PRODg GENERATE d, c, SUM(idic) AS dXc; 
 

SQR = FOREACH C GENERATE c, ic * ic AS ic
2; 

SQRg = GROUP SQR BY c; 
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc; 
 

DOT_LEN = JOIN LEN_C  BY c, DOT_PROD BY c; 
SIM = FOREACH DOT_LEN GENERATE d, c, dXc / lenc; 
 

SIMg = GROUP SIM BY d; 
CLUSTERS = FOREACH SIMg GENERATE TOP(1, 2, SIM); 

k-means in Apache Pig: E-step 
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k-means in Apache Pig: E-step 
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SQR = FOREACH C GENERATE c, ic * ic AS ic
2; 

SQRg = GROUP SQUA BY c; 
LEN_C = FOREACH SQRg GENERATE c, SQRT(SUM(ic

2)) AS lenc; 
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k-means in Apache Pig: M-step 

D_C_W = JOIN CLUSTERS BY d, D BY d; 
 
D_C_Wg = GROUP D_C_W BY (c, w); 
SUMS = FOREACH D_C_Wg GENERATE c, w, SUM(id) AS sum; 
 
D_C_Wgg = GROUP D_C_W BY c; 
SIZES = FOREACH D_C_Wgg GENERATE c, COUNT(D_C_W) AS size; 
 
SUMS_SIZES = JOIN SIZES BY c, SUMS BY c; 
C = FOREACH  SUMS_SIZES  GENERATE c, w, sum / size AS ic ; 



MapReduce job setup time 

• In an iterative process, setting up a MapReduce 
job at each iteration is costly 

• Solution: forward scheduling 

– Setup the next job before the previous completed 

Panda et al, Chapter 2 

Setup Process Tear down 

Setup Process Tear down 

Setup Process Tear down 

Data 

Data 

Data 

Data 



k-means in DryadLINQ 

Vector NearestCenter(Vector point, IQueryable<Vector> centers)  
{ 

    var nearest = centers.First(); 
    foreach (var center in centers) 
        if ((point - center).Norm() < (point - nearest).Norm()) 
            nearest = center; 
    return nearest; 
} 
 

IQueryable<Vector> KMeansStep(IQueryable<Vector> vectors, 
                                                              IQueryable<Vector> centers)  
{ 

   return vectors.GroupBy(vector => NearestCenter(vector, centers)) 
                             .Select(g => g.Aggregate((x,y) => x+y) / g.Count()); 
} 

Budiu et al, Chapter 3 



DryadLINQ: k-means execution plan  



Takeaways on MapReduce wrappers 

• Machine learning in SQL is fairly awkward  

• DryadLINQ looks much more suitable 

– Beta available at 
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx 

– Check out Chapter 3 for a Kinect application!!! 

• Writing high-level code requires deep 
understanding of low-level processes 

http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/07/07/announcing-linq-to-hpc-beta-2.aspx


Parallelization: platform choices 

Platform Communication Scheme Data size 

Peer-to-Peer TCP/IP Petabytes 

Virtual Clusters MapReduce / MPI Terabytes 

HPC Clusters MPI / MapReduce Terabytes 

Multicore Multithreading Gigabytes 

GPU CUDA Gigabytes 

FPGA HDL Gigabytes 



HPC clusters 

• High Performance Computing clusters / blades / 
supercomputers 

– Thousands of cores 

• Great variety of architectural choices 

– Disk organization, cache, communication etc. 

• Fault tolerance mechanisms are not crucial 

– Hardware failures are rare 

• Most typical communication protocol: MPI 

– Message Passing Interface 
Gropp et al, MIT Press 1994 



Message Passing Interface (MPI) 

• Runtime communication library 

– Available for many programming languages 
• MPI_Bsend(void* buffer, int size, int destID) 

– Serialization is on you  
• MPI_Recv(void* buffer, int size, int sourceID) 

– Will wait until receives it 

• MPI_Bcast – broadcasts a message 

• MPI_Barrier – synchronizes all processes 



MapReduce vs. MPI 

• MPI is a generic 
framework 

– Processes send 
messages to other 
processes 

– Any computation 
graph can be built 

• Most suitable for the 
master/slave model 



k-means using MPI 

• Slaves read data portions 

• Master broadcasts centroids to slaves 

• Slaves assign data instances to clusters 

• Slaves compute new local centroids and    
local cluster sizes 

– Then send them to the master 

• Master aggregates local centroids weighted 
by local cluster sizes into new global centroids 

Pednault et al, Chapter 4 



Two features of MPI parallelization 

• State-preserving processes 

– Processes can live as long as the system runs 

– No need to read the same data again and again 

– All necessary parameters can be preserved locally 

• Hierarchical master/slave paradigm 

– A slave can be a master of other processes 

– Could be very useful in dynamic resource allocation 

• When a slave recognizes it has too much stuff to process 

Pednault et al, Chapter 4 



Takeaways on MPI 

• Old, well established, well debugged 

• Very flexible 

• Perfectly suitable for iterative processing 

• Fault intolerant 

• Not that widely available anymore  

– An open source implementation: OpenMPI 

– MPI can be deployed on Hadoop 
Ye et al, CIKM 2009 
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Multicore 

• One machine, up to dozens of cores 

• Shared memory, one disk 

• Multithreading as a parallelization scheme 

• Data might not fit the RAM 

– Use streaming to process the data in portions 

– Disk access may be the bottleneck 

• If it does fit, RAM access is the bottleneck 

– Use uniform, small size memory requests 
Tatikonda & Parthasarathy, Chapter 20 
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Graphics Processing Unit (GPU) 

• GPU has become General-Purpose (GP-GPU) 

• CUDA is a GP-GPU programming framework 

– Powered by NVIDIA 

• Each GPU consists of hundreds of multiprocessors 

• Each multiprocessor consists of a few ALUs 

– ALUs execute the same line of code synchronously 

• When code branches, some multiprocessors stall 

– Avoid branching as much as possible 



Machine learning with GPUs 

• To fully utilize a GPU, the data needs to fit in RAM 

– This limits the maximal size of the data 

• GPUs are optimized for speed 

– A good choice for real-time tasks 

• A typical usecase: a model is trained offline and 
then applied in real-time (inference) 

– Machine vision / speech recognition are example 
domains 

Coates et al, Chapter 18 
Chong et al, Chapter 21 



k-means clustering on a GPU 

• Cluster membership assignment done on GPU: 

– Centroids are uploaded to every multiprocessor 

– A multiprocessor works on one data vector at a time 

– Each ALU works on one data dimension 

• Centroid recalculation is then done on CPU 

• Most appropriate for processing dense data 

• Scattered memory access should be avoided 

• A multiprocessor reads a data vector while its 
ALUs process a previous vector 

Hsu et al, Chapter 5 



Performance results 

• 4 millions 8-dimensional vectors 

• 400 clusters 

• 50 k-means iterations 

 

• 9 seconds!!! 



Parallelization: platform choices 

Platform Communication Scheme Data size 

Peer-to-Peer TCP/IP Petabytes 

Virtual Clusters MapReduce / MPI Terabytes 

HPC Clusters MPI / MapReduce Terabytes 

Multicore Multithreading Gigabytes 

GPU CUDA Gigabytes 

FPGA HDL Gigabytes 



Field-programmable gate array (FPGA) 

• Highly specialized hardware units 

• Programmable in Hardware Description 
Language (HDL) 

• Applicable to training and inference 

 

 

• Check out Chapter 7 for a hybrid parallelization: 
multicore (coarse-grained) + FPGA (fine-grained) 

Durdanovic et al, Chapter 7 
Farabet et al, Chapter 19 



How to choose a platform 

• Obviously depending on the size of the data 

– A cluster is a better option if data doesn’t fit in RAM 

• Optimizing for speed or for throughput 

– GPUs and FPGAs can reach enormous speeds 

• Training a model / applying a model 

– Training is usually offline 



Thank You! 

http://hunch.net/~large_scale_survey 



Parallel Information-Theoretic 
Co-Clustering 

Bekkerman & Scholz, Chapter 13 
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Information-Theoretic Co-Clustering 

• Construct clusterings of X and Y by optimizing 
Mutual Information 

  
 


Xx YyYXYX ypxp

yxpyxpYX
~~ ~~

~,~~,~ )~()~(
)~,~(log)~,~(maxarg~;~Imaxarg



Dhillon et al, KDD 2003 

Two optimization strategies 

• Both strategies: 

– Randomly initialize clusterings of X and Y  

– Alternate reclustering      wrt     and     wrt 

• Strategy 1: Centroid-based 
 

– At iteration t, assign each x to cluster x with 
 
   

– Compute                         for each new cluster x 




 )~|~()|~(minarg )(~ xYPxYPD tKLx

X~ Y~ X~Y~

~ 

)~|~()1( xYPt ~ 

“centroid” 



 
 Sequential Co-Clustering 

 
• For each x: 

– Remove x from its original cluster 

– For each cluster x: 

• Compute the delta in the Mutual Information                      
if x is assigned to x 

– Assign x to the cluster such that the delta is maximal 

~ 

~ 



Sequential vs. centroid-based updates 



Sequential vs. centroid-based updates 



Theoretical results in a nutshell 

 

• The centroid-based algorithm misses updates 
 

• Sequential CC updates more aggressively & faster 
 

• Theorem: 
Sequential CC has a true subset of local optima 
compared to centroid-based IT-CC 

 



Results on small data sets 

Dataset  centroid  sequential 

acheyer  39.0  .6  46.1  .3  

mgondek  61.3 1.5  63.4  1.1 

sanders-r  56.1  .7 60.2  .4 

20NG   54.2  .7  57.7  .2 

Does the sequential strategy 
work better on large sets? 



From inherently sequential to parallel 

• Objective function: 
 Xx Yy ypxp

yxpyxpYX
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1
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Parallel sequential co-clustering 

• Initialize clusters at random 

• Split clusters to pairs 

• Assign each pair to one machine 

• “Shuffle” clusters in parallel 

– Try moving each instance from one cluster to another 

• Assign a different pair of clusters to each machine 

• Repeat to cover all cluster pairs 



How can we make sure that each cluster 
pair is generated exactly once? 

With minimal communication costs? 
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Experimental Setup 

• DataLoom: 

– Parallelization of sequential co-clustering 

– MPI-based implementation 

• Centroid-based IT-CC: 

– Implementation in MapReduce 

• Double k-means: 

– Co-clustering in Euclidean space 



Overall costs per full iteration 

  k : #clusters,  m : #machines,  v : #values in P(Y | X) 
 

• Communication: 
– centroid-based O(2m  k  |Y|) = O(m  k2)  

– DataLoom   O((k-1)  (v/2)) = O(k  v) 
 

• In our experiments (many machines, sparse data): 
 (sending centroids)  2m|Y|  v/2   (sending cluster) 

 

• CPU cycles: O(k  v) for both centroid-based & DataLoom 

~ 

~ 

~ 



Experimental results 

• RCV1 dataset 
– 800,000 docs 

– 150,000 words 

 

• Netflix (KDD Cup ‘07) 

– 18,000 movies 

– 480,000 users 

112 

• 55 2nd-level Reuters categories 
• 800 document / 800 term clusters 
• clustering without label 
information 
• choose the mode of each cluster 

• Clustering binary rating matrix 
• 800 movie / 800 user clusters 
• for hold-out users: rank movies 
• cluster-induced distribution: 
 
 



Conclusion 

• DataLoom: parallelization of sequential co-
clustering 

• Theoretical result: 

– Sequential updates superior for cluster updates 

• Experimental results: 

– Excellent clustering results on two large benchmarks 


