
Joint prediction via imitation learning
Part of Speech Tagging

Dependency Parsing

NLP algorithms use a kitchen sink of features

ROOT

NLP algorithms use a kitchen sink of features
NN NNS VBP DT NN NN IN NNS

Joint prediction via imitation learning

NLP

algorithms
use a

kitchen

sink

of
features

ROOT

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Extracted 27K+ binary features
from last 4 observations
(14 binary features for every cell)

Output:Input:

From Mario AI competition 2009

An analogy from playing Mario

High level goal:
Watch an expert play and

learn to mimic her behavior

Vanilla supervised learning

ππ**

1. Collect trajectories from expert π*
● Trajectory = sequence of state/action pairs over time
● States are represented as feature vectors

– Incorporates current “observations” …
– … and any past decisions

2. Store as dataset D = { (s, π*(s)) | s ~ π* }
3. Train classifier π on D

● Let π play the game!

Training (expert)

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell

Test-time execution (classifier)

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell

What's the (biggest) failure mode?

ππ**

● The expert never gets stuck next to pipes
● => Classifier doesn't learn to recover!

Imitation learning: DAgger

ππ**

1. Collect trajectories from expert π*
2. Dataset D0 = { (s, π*(s)) | s ~ π* }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!
5. Dataset D1 = { (s, π*(s)) | s ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:
● Dn = { (s, π*(s)) | s ~ πn }
● Train πn on ∪i<n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

Test-time execution (DAgger)

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell

What's the biggest failure mode?
● Classifier only sees “right” versus “not-right”

● No notion of “better” or “worse”
● No “partial credit”
● Must have a single “target” answer

ππ**

ππ11

ππ22

Joint prediction via learning to search
Part of Speech Tagging

Dependency Parsing

NLP algorithms use a kitchen sink of features

ROOT

NLP algorithms use a kitchen sink of features
NN NNS VBP DT NN NN IN NNS

Learning to search

1.Generate an initial trajectory
using a rollin policy

2.Foreach state R on that trajectory:
a)Foreach possible action a (one-step deviations)

i. Take that action
ii. Complete this trajectory using a rollout policy
iii.Obtain a final loss

b)Generate a cost-sensitive classification example:
(Φ(R), caaA)

S R E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

Choosing the rollin/rollout policies
● Three basic options:

● The currently learned policy (“learn”)
● The reference/expert policy (“ref”)
● A stochastic mixture of these (“mix”)

Sanity check: which of these is closest to DAgger?

 Out
In

Ref Mix Learn

Ref Inconsistent
One-step fail

Inconsistent Inconsistent

Learn One-step fail Good Really hard

Note: if the reference
policy is optimal then:
In=Learn & Out=Ref
is also a good choice

From Mario back to POS tagging

● The oracle (reference) policy gives the true label
for the corresponding word

● Sanity check: why/when is this optimal?

def _run(self, sentence):
 out = []
 for n in range(len(sentence)):
 pos,word = sentence[n]
 ex = example({'w': [word]})
 pred = predict(ex, pos)
 out.append(pred)
 loss(# of pred != pos)
 return out

Optimal policies

● Given:
● Training input x
● State R
● Loss function

● Return the action a that:
● (If all future actions are taken optimally)
● Minimizes the corresponding loss

S R E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

Optimal policies for harder problems
● Consider word-based machine translation

● You want to write
● But what does the

optimal policy do?

 F: Marie programme l' ordinateur
 E: Mary programs the computer

 State R: Mary _____
 State R': The computer _____
 State R'': Aardvarks _____

 F,ref = input
 E = [<s>]
 i = 1
 cov = {}
 while |cov| != |F|:
 a = predict(cov, ???)
 e = predict(Fa, ???)
 cov[a] = true
 E.push(e)
 i += 1
 loss(1-BLEU(E, ref))
 return E

How can you do this for Mario?

Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Output:Input:

Reference policy is constructed on-the-fly:
At each state, execute a depth-4 BFS
At each of the 64k leaves, evaluate

Choose initial action that leads to local optimum

Key concepts and commentary
● Rollin / rollout / one-step deviations
● Reference policy / optimal policy
● Joint loss

● Tips:
● Defining a good reference can be tricky:

– If optimal, do: in=learn, out=ref|none
– If suboptimal, do: in=learn, out=mix

● Can only learn to avoid compounding errors given
the right features

Coming up next....
● Instantiating these ideas in vw
● During the break, please:
git clone git@github.com:JohnLangford/vowpal_wabbit.git
make
make python
cd python
python test.py
python test_search.py

● And ask us any questions you might have!
● When we return, we'll build some predictors!

A short reading list
● DAgger (imitation learning from oracle):

A reduction of imitation learning and structured prediction to no-regret online learning
Ross, Gordon & Bagnell, AIStats 2011

● AggreVaTe (roughly “DAgger with rollouts”)
Reinforcement and imitation learning via interactive no-regret learning
Ross & Bagnell, arXiv:1406.5979

● LOLS (analysis of rollin/rollout, lower bounds, suboptimal reference)
Learning to search better than your teacher
Chang, Krishnamurthy, Agarwal, Daumé III & Langford, ICML 2015

● Imperative learning to search (programming framework, sequence labeling results)
Efficient programmable learning to search
Chang, Daumé III, Langford & Ross, arXiv:1406.1837

● State of the art dependency parsing in ~300 lines of code
Learning to search for dependencies
Chang, He, Daumé III & Langford, arXiv:1503.05615

● Efficiently computing an optimal policy for shift-reduce dependency parsing
A tabular method for dynamic oracles in transition-based parsing
Goldberg, Sartorio & Satta, TACL 2014

	Slide 1
	Slide 2
	Experiments: Super Mario Bros
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

