
Continuous Experts and the Binning Algorithm

Jacob Abernethy1, John Langford1, and Manfred K. Warmuth23

1 Toyota Technological Institute, Chicago
2 University of California at Santa Cruz

3 Supported by NSF grant CCR CCR 9821087
{jabernethy,jl}@tti-c.org, manfred@cse.ucsc.edu

Abstract. We consider the design of online master algorithms for com-
bining the predictions from a set of experts where the absolute loss of the
master is to be close to the absolute loss of the best expert. For the case
when the master must produce binary predictions, the Binomial Weight-
ing algorithm is known to be optimal when the number of experts is
large. It has remained an open problem how to design master algorithms
based on binomial weights when the predictions of the master are allowed
to be real valued. In this paper we provide such an algorithm and call it
the Binning algorithm because it maintains experts in an array of bins.
We show that this algorithm is optimal in a relaxed setting in which we
consider experts as continuous quantities. The algorithm is efficient and
near-optimal in the standard experts setting.

1 Introduction

A large number of on-line learning algorithms have been developed for the so-
called expert setting [LW94,Vov90,CBFH+97,CBFHW96,HKW98]: learning pro-
ceeds in trials; at each trial the master algorithm combines the predictions from
the experts to form its own prediction; finally a label is received and both the
experts and master incur a loss that quantifies the discrepancy between the pre-
dictions and the label. The goal of the master is to predict as well as the best
expert. In this paper we focus on the absolute loss when the predictions of the
experts and the labels are binary in {0, 1}, but the prediction of the master can
be continuous in the range [0, 1].4

Perhaps the simplest expert algorithm is the Halving algorithm: the master
predicts with the majority of experts and, whenever the majority is wrong, the
incorrect experts are eliminated. If there is at least one expert that never errs
then this algorithm makes at most log2 n mistakes, where n is the number of
experts.

Master algorithms often maintain a weight for each expert that represent the
“belief” that the expert is best. In the Halving algorithm the weights of all con-
sistent experts are uniform and the weights of inconsistent experts immediately
drop to zero. When there is no consistent expert for the sequence of trials, then a

4 The loss |ŷ − y| (for prediction ŷ ∈ [0, 1] and label y ∈ {0, 1}) equals E(|Z − y|) for
a binary valued prediction random variable Z for which E(Z) = ŷ.

more gradual decay of the weights is needed. Most expert algorithms (such as the
Weighted Majority (WM) algorithm [LW94] and Vovk’s Aggregate algorithms
[Vov90]) use exponentially decaying weights, i.e. the weights are proportional to
exp(−ηLi), where Li is the total loss of expert i and η a non-negative learn-
ing rate. If we assume that there is an expert that makes at most k mistakes,
then large k (high noise) requires small η and small k (low noise) high η. In the
Halving algorithm k = 0 and η = ∞.

A superior algorithm, Binomial Weighting (BW), uses binomial weights for
the experts [CBFHW96]. These weights are motivated by a version space ar-

gument: if an expert has k′ ≤ k mistakes left, then it is expanded into
(
q∗+1
≤k′

)

experts5, where q∗ is a bound on the number of remaining mistakes of the mas-
ter. In each of the expansions, at most k′ of the q∗ trials are chosen in which the
expanded expert negates its prediction. We now can run the Halving algorithm
on the set of all expanded experts. However this argument requires that the
number of mistakes q∗ of the master is bounded. This is easily achieved when
the master makes binary predictions and incurs units of loss. In that case, all
trials in which the master predicts correctly can be ignored and in trials when
the master makes a mistake, at least half of the expanded experts are eliminated
and there can’t be too many such trials.

Restricting the master to use binary predictions is a significant handicap as
it does not allow the algorithm to hedge effectively when the experts produce
a relatively even vote. In this case, the master prefers to predict .5 instead of
predicting6 0 or 1. The main open problem posed in [CBFHW96] is the question
of how the fancier binomial weights can be used in the case when the master’s
predictions lie in [0, 1]. In that case there are no good bounds on the number
of trials because now all trials in which the master incurs any loss need to be
counted.

In this paper we provide such a prediction strategy, called Binning, and we
show that this strategy is essentially optimal. We generalize the standard experts
setting to consider experts as continuous quantities: we allow each expert to split
itself into parts r and 1− r, where part r of the expert predicts 1 and part 1− r
predicts 0. Intuitively, the relaxation to continuous quantities of experts removes
the discretization effects that make the computation of the optimal strategy
difficult.

In our approach we consider an associated game where the master plays
against an adversary who controls the predictions of the experts and the out-
comes of every round to maximize the master’s total loss. We show that for this
relaxed setting the adversary can always play optimally by splitting all remaining
experts in half.

5 This number of expansions is the current binomial weight of the expert. Exponential
weights always change by a fixed factor exp(−η) in case of a mistake. However the
update factors to the binomial weights “cool down” in subtle ways as k′ gets close
to k and q∗ decreases.

6 As discussed before predicting .5 is equivalent to predicting randomly.

Binning is very similar to the Binomial Weighting algorithm (BW) in that it
implicitly uses binomial weights. In the case of exponential weights, the bound
for the algorithm with predictions in [0, 1] (i.e. Vovks aggregating algorithm for
the absolute loss) is half of the bound for the algorithm with binary predictions
(i.e. the WM algorithm). Essentially the same happens for binomial weights.
The bound we prove for the new Binning algorithm (predictions in [0, 1]) is a
constant plus half of the bound of the BW algorithm (predictions in {0, 1}) and
the additive constant is well behaved. It is already known that for large n, BW
is optimal when the prediction of the master must be binary. Since no algorithm
with predictions in [0, 1] can be better that half of the best binary prediction
algorithm, our new Binning algorithm is essentially optimal.

Summary of paper: We begin in Section 2 by introducing our notation
and formulating the optimal prediction strategy of the expert’s game when the
master uses predictions in [0, 1]. In Section 3 we define the continuous game
in which we allow continuous quantities of experts. We show the following is
always an optimal split in each trial of the continuous game: all experts split
themselves in half (resulting in experts of size 1

2i). We also relate the optimal
algorithm for this game (i.e. the new Binning algorithm) to the BW algorithm.
In Section 4 we give some experimental results showing Binning’s performance
and its worst case bound on real world datasets. Finally, in Section 5 we discuss
various open problems as well as high level goals that might be attainable with
our new continuous-experts technique.

2 The Optimal Prediction Strategy

We have n experts that make binary predictions and we are to design a master
algorithm that combines the predictions of the experts with the goal of perform-
ing well compared to the best expert. Our on-line learning model can be viewed
as a game that proceeds in trials. At each trial the following occurs: first, each
expert i produces a prediction xi ∈ {0, 1}; then the master produces a prediction
ŷ ∈ [0, 1] and finally, the true label y ∈ {0, 1} is received and both the experts
and the master incur a loss: expert i incurs loss |xi−y| and the master loss |ŷ−y|.
Recall that the experts’ predictions and the labels are binary, but the prediction
of the master lies in [0, 1]. (Generalizations are discussed in the conclusion).

The two parties of the game are nature and the master: nature provides
the predictions of the experts, the master gives a prediction in each trial, and
finally nature provides the true label. We must restrict the adversary, since an
unrestricted adversary can continue to inflict loss at least 1

2 in each round. A
common restriction is the following: the true labels and the choices of the experts’
predictions have to be such that at least one expert has total loss at most k. We
call this restriction the k-mistake rule. It is assumed that k is known to both the
master and the adversary before the game starts.

Notice that, with the addition of the k-mistake rule, the game is essentially
finite. If, after many rounds, all but one expert has made more than k mistakes,
and the last expert has made exactly k, then this expert is required to predict

correctly from this point on. In this case, the master can simply mimic the
prediction of this expert, and the adversary cannot allow this expert to err.
Since this simple strategy of the master assures that the master incurs no future
loss, the game has ended.

Observe that, after a number of trials, the only relevant information about
the past is the number of experts that made 0, 1, . . . , k mistakes. The experts can
then be partitioned into k+1 bins and the past can therefore be summarized by
the state vector s = (s0, . . . , sk), where si is the number of experts that has made

i mistakes. We also use the notation |s| := |s|1 =
∑k

i=0 si for the total number of
experts. It is possible that |s| ≤ n, as some experts might have incurred already
more than k mistakes and therefore will be ignored. Our state space is therefore
the set S = {s ∈ {0, 1, . . . , n}k : |s| ≤ n}.

By choosing binary predictions for the experts, the adversary splits the state
vector s into r and s − r such that r ≤ s and r ∈ S. The vector r represents
the experts that predict one and the vector s− r the experts that predict zero.
After the adversary provides the binary label y, the experts that predict wrongly
advance by one bin. For any state vector z ∈ S, we use z+ to denote the shifted
vector (0, z0, z1, . . . , zk−1). When y = 0, then r advances, and when y = 1, then
s− r does, and the successor state is

sr,y =

{
r+ + (s− r) if y = 0
r + (s− r)+ if y = 1.

Let’s give an example of one round of our game. Assume the mistake bound
k is 2 and the number of experts n is 6. Initially, our state vector is (6, 0, 0).
However, after several rounds, 2 experts have made no mistakes, 1 expert has
made 2 mistakes, and 3 experts have made more than 2 mistakes. Our state
vector is now (2, 0, 1). On the next round we receive predictions from the experts,
and we find that the only expert to predict 1 was one of the experts with no
mistakes. In this case, the split of the state vector is

s + (2, 0, 1) =

r︷ ︸︸ ︷
(1, 0, 0)+

s−r︷ ︸︸ ︷
(1, 0, 1),

and the two resulting possible states would be

sr,0 =

r
+

︷ ︸︸ ︷
(0, 1, 0)+

s−r︷ ︸︸ ︷
(1, 0, 1) = (1, 1, 1)

sr,1 = (1, 0, 0)︸ ︷︷ ︸
r

+ (0, 1, 0)︸ ︷︷ ︸
(s−r)+

= (1, 1, 0).

2.1 The Value of the Game

We define the value of our game at a state s as the total loss the adversary can
force the master to incur if its choices satisfy the k-mistake rule. With the above

notation we can express the value of the game as:

ℓ(s) :=





−∞ if s = 0

0 if s = (0, . . . , 0, 1)
max

r≤s,r∈S
min

ŷ∈[0,1]
max

y∈{0,1}
(|ŷ − y| + ℓ(sr,y)) s ∈ rest of S.

(1)

At various points in the paper we induct on the mistake budget B(s) of a
state, which we define as the total number of mistakes that can be made by
all of the experts before arriving in the final state bk = (0, ..., 0, 1). Explicitly,

B(s) := −1+
∑k

i=0(k− i+1)si. Notice, B(0) = −1 and if B(s) = 0 then s must
be the final state bk.

Some care needs to be taken to assure that the above game is well defined
because of the possibility that all of the experts make the same prediction. If a
split is unanimous, i.e. all experts predict u = 1 and r = s, or all experts predict
u = 0 and r = 0, then the master must choose ŷ as the unanimous label u. If
the master chose ŷ 6= u, the adversary would simply choose y = u, inflicting
positive loss |ŷ−u| on the master while the experts incur no mistakes. Therefore
whenever all experts predict with some unanimous label u, the optimal choice
of the master is ŷ = u also.

How should the adversary choose its label y when all experts predict with
some unanimous label u and ŷ = u? If y = u then the current trial is vacuous
because sr,y = s and none of the parties incur any loss. We need to make the
mild assumption that such vacuous trials are disallowed. Therefore y 6= u in
unanimous trials and in this case the successor state is sr,y = s+. In summary,

r ∈ {0, s} =⇒ min
ŷ∈[0,1]

max
y∈{0,1}

(|ŷ − y| + ℓ(sr,y)) = 1 + ℓ(s+).

We now expand the recurrence slightly by rewriting (1) as follows. As before,
ℓ(0) = −∞ and ℓ(bk) = 0, and for every other state s ∈ S,

ℓ(s) = max
r ≤ s

r ∈ S





1 + ℓ(s+) if r ∈ {0, s}

max{ℓ(sr,0), ℓ(sr,1)} if r /∈ {0, s}, |ℓ(sr,1) − ℓ(sr,0)| > 1
ℓ(sr,1)+ℓ(sr,0)+1

2 if r /∈ {0, s}, |ℓ(sr,1) − ℓ(sr,0)| ≤ 1

(2)

The unanimous case (i.e. when r = 0, s) follows from the above discussion.
The remaining two cases arise when we consider how the game is played once r

has been chosen. The master algorithm wants to choose ŷ, while knowing that
the adversary can simply choose the larger of |ŷ − y| + ℓ(sr,y) for y ∈ {0, 1}.
Thus it would like to minimize L(r, ŷ) := max{ŷ + ℓ(sr,0), 1 − ŷ + ℓ(sr,1)}.
It can accomplish this by making these two quantities as close as possible.
When |ℓ(sr,0) − ℓ(sr,1)| ≤ 1, it can make them exactly equal by setting ŷ =
ℓ(sr,1)−ℓ(sr,0)+1

2 . However, when ℓ(sr,1) > ℓ(sr,0) + 1, the master should choose
ŷ = 1 and L(r, ŷ) = ℓ(sr,1). Similarly when ℓ(sr,0) > ℓ(sr,1) + 1 then ŷ = 0
and L(r, ŷ) = ℓ(sr,0). The latter two cases are summarized in line 2 of above
recursion, completing the argument that the above recursion is equivalent to (1).

Algorithm 1 OptPredict
k

At round t, the number of past mistakes of the experts are tallied in the state vec-
tor s and the experts that predict 1 (respectively 0) are tallied in the split vector r

(respectively s − r). The master algorithm OptPredict
k

outputs prediction:

ŷ = clip

„
ℓ(sr,1) − ℓ(sr,0) + 1

2

«
, (4)

where clip(x) is the point in [0, 1] closest to x.

A further and more subtle simplification of the above recurrence is provided
by the following lemma which rules out the first two lines of (2). In particular,
it implies two useful facts: (a) unanimous splits only occur when there is a
single expert and (b) when |s| > 1, the adversary will never choose r so that
|ℓ(sr,1) − ℓ(sr,0)| > 1.

Note that when there is exactly one expert left which has made i ≤ k mis-
takes, i.e. s is the standard basis vector bi, then all splits must be unanimous
and ℓ(bi) = k − i.

Lemma 1. For any state s ∈ S s.t. |s| > 1,

ℓ(s) = max
0<r<s

{
ℓ(sr,0) + ℓ(sr,1) + 1

2

}
. (3)

The proof requires a rather technical induction and is given in the appendix.
We now have a very simple recursion for computing ℓ, and we can easily

define the optimal prediction strategy OptPredict
k
, as in (4), with oracle access

to this function. Unfortunately, ℓ is still too expensive to compute: it requires the
solution of a dynamic programming problem over O(|S|) = O((n + 1)k) states.

3 The Continuous Game

Computing the value function ℓ using (3) is too difficult: at every round we must
consider all possible splits r. However, empirical observations have suggested that
splits r close to s

2 are optimal for the adversary. In particular, we have observed
that, whenever s has only even entries, the split r = s

2 is always optimal. This
evidence leads one to believe that an optimal adversarial strategy is to evenly
divide the experts, thus balancing the loss value of the two successor states as
much as possible. Unfortunately, this is not always possible when the experts
come in discrete units.

We therefore develop a continuous game that always allows for such “even
splits” and show that the value of this continuous game is easy to compute and
tightly upper bounds the value function of the original game. The continuous
game follows the same on-line protocol given in the first paragraph of Section
2, however now each expert has a mass in [0, 1] and at each trial each expert
is allowed to split itself into two parts which predict with opposite labels. The
total mass of the two parts must equal the original mass.

3.1 The Continuous Experts Setting

As in the discrete game, the state of the new game is again summarized by a
vector, i.e. it is not necessary to keep track of the identities of the individual
experts of mass in [0, 1]. The state space of the new game is S̃ = {s ∈ [0, n]k+1 :
|s| ≤ n}. The initial state vector is again (n, 0, . . . , 0), but the split r may have
non-negative real valued components.

We now define a new value function ℓ̃ on S̃. We would like the definition of ℓ̃
to mimic the recursive definition of ℓ in (3), yet we must be careful to define the
“base case” of this recursion. In particular, how do we redefine the k-mistake rule
within this “continuous experts” setting? We require the following constraints
on ℓ̃: when |s| < 1, which we call an infeasible state, we define ℓ̃(s) := −∞;

when |s| ≥ 1, i.e. a total of one unit of experts remains, then ℓ̃(s) should be
non-negative.

These two requirements are not sufficient: we must consider the case when
we are at a feasible state s in which, given any split r that the adversary chooses,
at least one of the successor states is infeasible. This would be a state where the
game has effectively ended, and we will therefore consider it a base case of our
recursion. That is, the recursive definition in (3) would not be appropriate on

such a state, for ℓ̃(sr,0) or ℓ̃(sr,1) is −∞ (for any r), and we must therefore fix

the value ℓ̃(s). We let S0 denote the set of such base-case states:

S0 =
{
s : |s| ≥ 1 and ∀0 < r < s : |sr,0| < 1 or |sr,1| < 1

}

= {s : |s| ≥ 1 and ∀0 < r < s : |s| − rk < 1 or |s| − sk + rk < 1}

=
{
s : |s| ≥ 1 and |s| −

sk

2
< 1
}

= convex-hull{b0, . . . ,bk, 2bk} \
{
s : |s| −

sk

2
= 1
}

We obtain the convex hull representation because S0 is described by k +3 linear
constraints: s0 ≥ 0, . . . , sk ≥ 0,

∑
si ≥ 1 and sk

2 +
∑

i<k si < 1. The subsequent
polytop has corners b0, . . . ,bk and 2bk. The region is not exactly the convex
hull since the last constraint is a strict inequality, and thus we must subtract
one face. Notice that, while bk lies within S0, the remaining states b0, . . . ,bk−1,
and 2bk all lie on the subtracted face.

3.2 The Value of the Continuous Game

We are now in position to define our recursion for ℓ̃. For any state s ∈ S̃,

ℓ̃(s) :=






ℓ̃0(s) if s ∈ S0

max
r ≤ s, r ∈ eS

1
2
≤ |r| ≤ |s| − 1

2

ℓ̃(sr,0) + ℓ̃(sr,1) + 1

2
s ∈ rest of S̃. (5)

Note that it is crucial that in the above recurrence for ℓ̃ we bound7 the split
r away from 0 and s. Thus whenever we recurse, at least a total of half a unit
of experts is advanced and the depth of the recurrence is bounded by 2n(k + 1).

We still need a natural definition of ℓ̃0(s) for states s ∈ S0. The simplest

definition would be to define ℓ̃0 as zero. However, this would cause the value
function ℓ̃ to be discontinuous at the corners of the base region S0. Intuitively, we
want ℓ̃ to mimic ℓ as much as possible. Thus, the two properties that we require
of ℓ̃0 is (a) that it agrees with ℓ on the discrete corners of S0, and (b) that it

is continuous on the “in between” states. We therefore define ℓ̃0 on the interior
of S0 as the linear interpolation of ℓ on the corner states {b0, . . . ,bk, 2bk}. We

can explicitly define ℓ̃0(s) as follows: write s = α0b0 + . . . + αkbk + αk+1(2bk),
where αi ∈ [0, 1] and

∑
αi = 1. Let

ℓ̃0(s) :=

(
k∑

i=0

αiℓ(bi)

)
+ αk+1ℓ(2bk) =

(
k∑

i=0

αi(k − i)

)
+

αk+1

2

=

k−1∑

i=0

si (k − i) +
|s| − 1

2
.

We chose S0 and ℓ̃0(s) so that the following lemma holds:

Lemma 2. For all s ∈ S, ℓ̃(s) ≥ ℓ(s).

Proof. The continuous game is identical to the discrete game, except that we
have given the adversary a larger space to choose a split r. Essentially, increasing
the number of strategies for the adversary can only increase the loss of the game.

⊓⊔

3.3 An Optimal Adversarial Strategy

We now show that for the value function ℓ̃ of the continuous game, r = s−r = s/2
is always an optimal split for the adversary. In this case the successor state is

h(s) := s+s
+

2 no matter how y ∈ {0, 1} is chosen.

Define a function L as follows:

L(s) :=





−∞ if |s| < 1

ℓ̃0(s) if s ∈ S0
1
2 + L(h(s)) if s rest of S̃.

(6)

We prove ℓ̃ = L in two steps. The first is the following crucial lemma.

Lemma 3. L is concave.

7 eℓ does not change if we use instead the constraint ǫ ≤ |r| ≤ |s| − ǫ for any ǫ with
0 < ǫ ≤ 1

2
.

Proof. We have defined our base region S0 above. Notice that we can rewrite
S0 as {s ∈ S̃ : |s| ≥ 1, |h(s)| < 1}. Now define Sn for n ≥ 2 as {s : s /∈
Sn−1 and h(s) ∈ Sn−1} = {s : |hn(s)| > 1, |hn+1(s)| < 1}. We will show that
we can effectively reduce the concavity of L to the concavity of L on the region
S0 ∪ S1.

It suffices to show that L is concave on a set of convex open neighbors which
cover S̃ since the concavity property always fails locally. Let R0 := S0, and
for n > 0, define Rn as the interior of Sn−1 ∪ Sn, i.e. {s ∈ S̃ : |hn−1(s)| >

1, |hn+1(s)| < 1}. Let h0(s) := s by convention. Notice that ∪Rn = S̃ and each
Rn is open and convex.

Let L restricted to Rn be denoted L|Rn
. We show that L|Rn

is concave for
every n. L|R0

is certainly concave, for L is defined linearly on R0 = S0.
We show that L|R1

is concave by first noting that

L|R1
=

{
ℓ̃0(s) =

∑
si (k − i) + |s|−1

2 if s ∈ S0

ℓ̃1(s) = ℓ̃0(h(s)) + 1
2 =

∑
si (k − i) + sk

4 if s ∈ S1.
(7)

These two linear functions are equal when |s|−1
2 = sk

4 =⇒ |s| − sk

2 = 1, which
is exactly the border between S0 and S1. Since S0 is defined by the constraint
|s| − sk/2 < 1, we see that ℓ̃0(s) < ℓ̃1(s) when s ∈ S0. These last two statements

imply that L|R1
(s) = min{ℓ̃0(s), ℓ̃1(s)} and the minimum of two linear functions

is always concave.
Assume n > 1. Notice, s ∈ Rn implies that h(s) ∈ Rn−1. Thus L|Rn

=
L|Rn−1

◦ h + 1
2 . Note that: (a) h is an orientation-preserving linear function

(det(h) > 0), (b) addition by a constant preserves concavity, and (c) L|Rn−1
is

concave by induction. Therefore, L|Rn
is concave as well. ⊓⊔

We are now in position to prove the following theorem.

Theorem 1. For all s ∈ S̃,

ℓ̃(s) :=





−∞ if |s| < 1

ℓ̃0(s) if s ∈ S0
1
2 + ℓ̃(h(s)) if s rest of S̃.

(8)

Proof. We show that, for all s ∈ S̃, ℓ̃(s) = L(s). We induct on the mistake budget

B(s). When B(s) < 1
2 , then s ∈ S0, and ℓ̃ and L are defined identically on S0.

Now assume that p
2 ≤ B(s) < p+1

2 for some positive integer p. It is possible that

s ∈ S0, in which case certainly ℓ̃(s) = L(s). Otherwise,

ℓ̃(s) = max
r ≤ s, r ∈ eS

1
2
≤ |r| ≤ |s| − 1

2

ℓ̃(sr,0) + ℓ̃(sr,1) + 1

2
. (9)

However, since we may only choose r such that 1
2 ≤ |r| ≤ |s| − 1

2 , it must

be that B(sr,1) < p
2 and B(sr,0) < p

2 . By induction, ℓ̃(sr,0) = L(sr,0) and

ℓ̃(sr,1) = L(sr,1). However, by the concavity of L, we see that for any r,

ℓ̃(sr,0) + ℓ̃(sr,1) + 1

2
=

L(sr,0) + L(sr,1) + 1

2
≤ L

(
sr,0 + sr,1

2

)
+

1

2

= L

(
(s − r) + (r)+ + r + (s− r)+

2

)
+

1

2

= L

(
s + s+

2

)
+

1

2
= L(h(s)) +

1

2
= L(s)

and thus L is an upper bound on ℓ̃. On the other hand, notice also that B(h(s)) <
p
2 so ℓ̃(h(s)) = L(h(s)). Thus, for the choice r = s

2 , we see that

ℓ̃(s) ≥
ℓ̃(sr,0) + ℓ̃(sr,1) + 1

2
=

ℓ̃(h(s)) + ℓ̃(h(s)) + 1

2
= L(h(s)) +

1

2
= L(s),

and thus L is also a lower bound on ℓ̃. Therefore, ℓ̃(s) = L(s) and we are done.
⊓⊔

Corollary 1. The split r = s

2 is always an8 optimal choice for the adversary in

the continuous game.

3.4 The Binning Algorithm

We can now define our new algorithm Binning
k

by simply replacing ℓ in equation

(4) with the new function ℓ̃. We will reason below that ℓ̃ can be computed
efficiently.

Theorem 1 tells us that, to get the value of ℓ̃(s), we apply the function h to
s several times until we are in the base region S0. Let

qs := min{q : hq(s) ∈ S0} = max{q : |hq(s)| ≥ 1}. (10)

This allows us to write ℓ̃(s) = qs

2 + ℓ̃0(h
qs

(s)). The function h is linear on the

state space S̃ and can be represented as a square matrix of dimension k+1 (The
matrix for k = 3 is given below). Thus hn corresponds to an n-fold power of this
matrix and leads to binomial coefficients:

h =

[
1/2 0 0 0
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

]
hn = 1

2n

[(
n

i−j

)]

i,j
.

From this observation, we see that, for any state s,

|hn(s)| =
1

2n

k∑

i=0

(
n

≤ (k − i)

)
si,

where we define
(

a
≤b

)
:=
∑

0≤b′≤b

(
a
b′

)
. This notation allows us to rewrite (10) as

(11) and concisely define Binning
k
.

8 In general, there are multiple optimal splits.

Algorithm 2 Binning
k

Summarize the expert performance with s, and current predictions with r. For both
y ∈ {0, 1}, compute

qy = q
s
r,y

= max

(
q :

1

2q

kX

i=0

q

≤ (k − i)

!
(sr,y)i ≥ 1

)
. (11)

Using the functions clip(·) defined in equation (4) and eℓ0(·) defined in (6), output
prediction

ŷ = clip

q1 − q0

4
+
eℓ0(hq1(sr,1)) − eℓ0(hq0(sr,0)) + 1

2

!
(12)

The naive complexity of solving (11) at every round is O(kqs) = O(k2 +

k log |s|), and for computing ℓ̃0 ◦ hq in (12) is O(kqs). The overall computation
for one round requires therefore O(k2 + k log |s| + n), where n is the initial
number of experts. Using bookkeeping one can reduce the per-round complexity
to O(n) by maintaining binomials

(
q

k−i

)
, binomial tails

(
q

≤k−i

)
, and the function

ℓ̃0◦hq(bi) for an expert with i mistakes. These values can be updated in constant
time using recurrences.

3.5 Binning and Binomial Weighting

In the introduction we discussed the algorithm Binomial Weighting which makes
deterministic predictions (ŷ ∈ {0, 1}) when a mistake bound k is given. BW finds
a bound, q∗, on the number of times the master errs, and considers a set of virtual
experts of size

∑
j

(
q∗+1

≤k−mj

)
where the sum is taken over all experts j, and mj

denotes the number of mistakes of expert j. In some sense, q∗ is computed in
hindsight: we make q∗ big enough so that we produce “enough” virtual experts,
i.e. so that we don’t halve the set of virtual experts too many times. It is chosen
as

q∗ = max



q : q ≤ log2

∑

j

(
q

≤ k − mj

)
 . (13)

Recall that, if we summarize the past performance of our experts with a state
vector s, then si is the number of experts e that have made i mistakes and
therefore

∑
j

(
q∗

k−mj

)
=
∑k

i=0

(
q∗

k−i

)
si. Interestingly, if we exponentiate the above

equation and divide by 2q∗

we arrive at equation (11) and thus qs = q∗.

The loss bound on Binning
k

is qs

2 + ℓ̃0(h
qs

(s)). Notice, the binomial nature

of hqs

forces the majority of the weight in s to be collected in sk, yet this term
has coefficient 1

2 in the function ℓ̃0. However, the term ℓ̃0(h
qs

(s)) quickly drops
to a constant c independent of k as the number of experts goes to ∞. Thus, the
loss ℓ̃(s) ≤ q∗

2 + c for large enough n. (The exact bound on ℓ̃0(h
qs

(s)) requires
some computation and is discussed in the full version of this paper.)

The factor of 1
2 is to be expected: the deterministic algorithm BW suffers

loss 1 at every round in the worst case, while Binning
k

will be forced to predict
ŷ = 1

2 against an optimal adversary, thus suffering loss 1
2 .

4 Experiments

We ran experiments with several real-world datasets (see table 1) obtained from
the UCI Machine Learning Repository. We chose rather simple experts: real val-
ued features were replaced with an “above or below median” expert. Categorical
features were replaced with a set of experts, one for each category value. When
category value v was encountered, expert v would be set to 1 and all others
would be set to 0. We also included the constant expert and for every expert,
the complement expert. The original ordering of the datasets was preserved.

data echo bupa hep wpbc dia bcw Aust ion beast wdbc kr-kp cat a-l

rounds 131 345 155 198 768 699 690 351 286 569 3196 873 8124

experts 28 14 70 72 18 20 30 70 100 64 220 1234 280

mistakes 39 145 32 47 237 65 184 122 79 83 1012 3 920

 0.1

 0.2

 0.3

 0.4

 0.5

a-
l

ca
t

kr
-k

p
w

db
c

br
ea

stio
n

A
us

t
bc

w
di

a
w

pb
c

he
p

bu
pa

ec
ho

er
ro

r
ra

te

Binning compared to Upper and Lower Bounds

Binning
Bound

Best
V. bound

 0

 0.1

 0.2

 0.3

 0.4

 0.5

a-
l

ca
t

kr
-k

p
w

db
c

br
ea

stio
n

A
us

t
bc

w
di

a
w

pb
c

he
p

bu
pa

ec
ho

er
ro

r
ra

te
Binning compared to Other Online Algorithms

Bin
BW
WM

Vovk

Fig. 1. In the table above we give the number of rounds, the number of experts, and
the number of mistakes of the best expert. The datasets are ordered above by byte
size. In the graph on the lower left we show how the performance of Binning compares
to the upper Bound on Binning performance, the Best single expert, and the bound on
Vovk’s algorithm. The right graph shows how the performance of Binning compares to
Binomial Weighting (BW) (2 entries missing), Weighted Majority (WM), and Vovk’s
algorithm.

All of the algorithms require the value k (the mistake bound) for tuning. Since
we want to compare the algorithms when they are optimally tuned we precom-
puted this value and provided it to each algorithm. The results are graphed in
Figure 1. The left graph shows that the Binning bound is tighter than the bound
for Vovk’s algorithm and often quite close to the actual Binning performance.
The right graph is surprising: the performance appears to worsen with the tighter

bound. In fact, BW and WM, both deterministic algorithms, performed better
than the best expert on 2 datasets. Perhaps a tighter bound has an associated
cost when, in actuality, we are not in an adversarial setting.

5 Conclusion

We discovered a new technique that replaces exponential weights by an optimal
algorithm for a continuous game. The key idea is to allow partial experts. Our
method uses binomial weights which are more refined then exponentially decay-
ing weights. Note that the latter weights can be derived using a relative entropy
as a divergence [KW97,KW99]. This reminds us of the application of entropies
in statistical mechanics where the entropy is used to approximate exact counts
that are based on binomial tails. In on-line learning we first discovered the en-
tropy based algorithms which use approximate counting by approximating the
binomial tails with exponentials. More recently refined algorithms are emerging
that are based on binomial counting (See also [Fre95,FO02] for related work on
Boosting).

The algorithms based on exponential weights are clearly simpler, but they
also require knowledge of k for tuning the learning rate η well. The algorithms
that use binomial weights always make use of k. If no tight upper bound of
the true k is not known, then simple doubling tricks can be employed (see e.g.
Section 4.6 of [CBFH+97]).

Much work has been done in the realm of exponentially decaying weights:
shifting experts [HW98], multi-arm bandit problems [ACBFS95] and so forth.
In general, the question is whether other cases in which exponential weights
have been used are amenable to our new technique of splitting experts. Also,
in some settings [FS97] the algorithm needs to commit to a probability vector
(wi) over the experts at the beginning of each trial. It then receives a loss vector
(Li) ∈ [0, 1]n and incurs a loss

∑
i wiLi. The question is whether weights can be

extracted from our Binning algorithm and the optimal algorithm can be found
for the modified setting when the experts are allowed to be continuous quantities.

For a more immediate goal note the following. We assumed that the pre-
dictions of the experts and the labels were binary. However in the realm of
exponentially decaying weights, Vovk’s aggregating algorithm for the absolute
loss [Vov90,CBFH+97] can handle expert’s predictions in [0, 1] and the Vee al-
gorithm of [HKW98] can in addition handle labels in [0, 1]. We believe that with
some additional effort our methods will generalize to handle these cases as well.

A Proof of Lemma 1

To prove the lemma it suffices to prove the following statements:

(a) For all splits 0 < r < s and y ∈ {0, 1}, ℓ(s) > ℓ(sr,y).
(b) For all |s| > 1, ℓ(s) > 1 + ℓ(s+) and unanimous splits are not optimal.

Notice that (a) implies that ℓ(s) > max{ℓ(sr,0), ℓ(sr,1)}, which rules out line
2 of the recursion (2). Also, statement (b) rules out line 1 and together, they
imply the lemma.

We prove the above two statements by induction on the mistake budget
B(s). Statements (a) and (b) trivially hold for the base case s = 0, i.e. when
B(s) = −1. Assume that (a) and (b) holds for all states s′ where B(s′) < B(s).
We now show that the statements holds for state s.

For (a), let r be any non-unanimous split of s and let z := sr,0. Consider two
cases depending on the value of |z|.

Assume |z| = 1, then z = bi. This implies that s = bi + mbk and r = mbk

for some m > 0. Then sr,0 = bi and sr,1 = bi+1 + mbk, and by (2), we see that

ℓ(s) ≥
ℓ(bi) + ℓ(bi+1 + mbk) + 1

2
=

k − i + ℓ(bi+1 + mbk) + 1

2
.

We now show that ℓ(bi+1+mbk) > k−i−1 which implies that ℓ(s) > k−i = ℓ(z).
If i = k then bi+1 = 0 and bi+1 + mbk = mbk. Therefore, we can see by
induction that ℓ(mbk) ≥ ℓ(bk) = 0 > −1. Also if i < k then by a similar
induction, ℓ(bi+1 + mbk) > ℓ(bi+1) = k − i − 1. This implies that ℓ(s) > k − i
as desired.

Assume |z| ≥ 2. Since B(z) < B(s), it follows by induction that there is some
non-unanimous split q of z s.t.

ℓ(z) =
ℓ(zq,1) + ℓ(zq,0) + 1

2
=

ℓ((sr,0)q,1) + ℓ((sr,0)q,0) + 1

2
.

Since r is non-unanimous it follows by induction that the above is less than
ℓ(sq,1)+ℓ(sq,0)+1

2 ≤ ℓ(s).

For the proof of (b), let z := s+. We consider two cases depending on the
value of |z|.

Assume |z| = 1. Then z = bi+1 for some i, and thus s = bi + mbk for
some m ≥ 1. Notice, we already proved above that, when s is of this form, that
ℓ(s) > k − i = ℓ(s+) + 1 as desired.

Assume |z| ≥ 2. We prove the statement by induction on the mistake budget
B(s). For the base case B(s) = 1, we must be in state (0, . . . , 0, 2) = 2bk and
therefore z = 0, so the statement is true. We now proceed to the induction step.
Notice that B(z) < B(s) and |z| ≥ 2. By induction, we can therefore find a

non-unanimous split q′ of z where ℓ(z) = ℓ(zq
′,1)+ℓ(zq

′,0)+1
2 . We now choose q so

that q+ = q′. Observe that (sq,y)+ = zq
′,y for y = 0, 1. Also, B(sq,y) < B(s),

and thus by induction we can apply (b), giving us that ℓ(sq,y) > ℓ((sq,y)+)+1 =
ℓ(zq

′,y) + 1. Combining these statements, we see that

ℓ(s) ≥
ℓ(sq,0) + ℓ(sq,1) + 1

2
>

ℓ(zq
′,0) + ℓ(zq

′,1) + 3

2
= ℓ(z) + 1 = ℓ(s+) + 1,

as desired. This completes the proof of the lemma

References

[ACBFS95] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
Gambling in a rigged casino: the adversarial multi-armed bandit prob-
lem. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, pages 322–331. IEEE Computer Society Press, Los
Alamitos, CA, 1995.

[CBFH+97] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth. How to use expert advice. Journal of the ACM,
44(3):427–485, 1997.

[CBFHW96] Nicolo Cesa-Bianchi, Yoav Freund, David P. Helmbold, and Manfred K.
Warmuth. On-line prediction and conversion strategies. Machine Learn-
ing, 25:71–110, 1996.

[FO02] Y. Freund and M. Opper. Drifting games and Brownian motion. Journal
of Computer and System Sciences, 64:113–132, 2002.

[Fre95] Y. Freund. Boosting a weak learning algorithm by majority. Information
and Computation, 121(2):256–285, September 1995.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, August 1997.

[HKW98] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of
individual sequences under general loss functions. IEEE Transactions on
Information Theory, 44(2):1906–1925, September 1998.

[HW98] M. Herbster and M. K. Warmuth. Tracking the best expert. Journal of
Machine Learning, 32(2):151–178, August 1998.

[KW97] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient
updates for linear prediction. Information and Computation, 132(1):1–64,
January 1997.

[KW99] J. Kivinen and M. K. Warmuth. Averaging expert predictions. In Paul
Fischer and Hans Ulrich Simon, editors, Computational Learning Theory:
4th European Conference (EuroCOLT ’99), pages 153–167, Berlin, March
1999. Springer.

[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
Information and Computation, 108(2):212–261, 1994. An early version
appeared in FOCS 89.

[Vov90] V. Vovk. Aggregating strategies. In Proc. 3rd Annu. Workshop on Com-
put. Learning Theory, pages 371–383. Morgan Kaufmann, 1990.

