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Active Learning

Can a learning algorithm effectively interactively choose which
examples to label?

The Active Learning Setting

Repeatedly:

1 Observe unlabeled example x .

2 Make prediction ŷ .

3 Asking for label? Yes/no

4 If yes, observe label y .

Goal: Simultaneously minimize the number of mistakes and the
number of labels requested.

Good solutions imply more efficient learning and a better
understanding of how to deal with other forms of interactive
learning.



Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Biased sampling: labeled points are not representative of the
underlying distribution!

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!
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Is this fixable?

1 BBL 2006: Yes, ignoring all issues except label efficiency.

2 DHM 2007: Yes, with an online algorithm also achieving
unlabeled data efficiency.

3 BDL 2009: The same for other loss functions.

4 BHLZ 2010: Yes, given an efficient loss optimization
algorithm. This talk.
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Importance Weighted Active Learning via Reduction

S = ∅
While (unlabeled examples remain)

1 Receive unlabeled example x .

2 Set p = Rejection-Threshold(x , S).

3 If U(0, 1) ≤ p, get label y , and add (x , y , 1
p ) to S .

4 Let h = Learn(S).

Consistency: (BDL2009) For all reasonable choices of
Rejection-Threshold, the algorithm is consistent.



What should Rejection-Threshold be?

On the kth unlabeled point, let:
ê(h,S) = 1

k

∑
(x ,y ,i)∈S i1(h(x) 6= y) = importance weighted error

rate.

Let h′ = minimum error rate hypothesis choosing other label.
Let ∆ = ê(h′,S)− ê(h,S) = error rate difference.

Choose p = 1 if ∆ ≤ O

(√
log k

k

)
Otherwise, let p = O

(
log k
∆2k

)

Competition: (BHLZ2010) With high probability, the IWAL
reduction has a similar error rate as supervised learning on k points.

Success: (BHLZ2010) If there is a small disagreement coefficient
θ, the algorithm requires only O

(
θ
√

k log k
)

+ a minimum due to
noise (K2006).
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Let ∆ = ê(h′,S)− ê(h, S) = error rate difference.

Choose p = 1 if ∆ ≤ O

(√
log k

k

)
Otherwise, let p = O

(
log k
∆2k

)

Competition: (BHLZ2010) With high probability, the IWAL
reduction has a similar error rate as supervised learning on k points.

Success: (BHLZ2010) If there is a small disagreement coefficient
θ, the algorithm requires only O

(
θ
√

k log k
)

+ a minimum due to
noise (K2006).



Disagreement Coefficient (Hanneke 2007)

Characterizes known examples where active learning can help.
Defined for any set of classifiers H and distribution D.

For any ε features x are of interest if there exists a hypothesis h:

1 With error rate less than ε larger than the best h∗.

2 That disagress with the best hypothesis, h∗(x) 6= h(x).

Disagreement coefficient is θ = maxε
Pr(interestingε x)

ε
(See ICML 2009 tutorial for examples)
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The Martingale Barrier Problem

Proofs are complex, but rest on the solution to a Martingale
Barrier Problem.

Given a coin of bias < 0.5, how can we choose the probability of p
of a coin flip so that:

1 The average number of heads is small: 1
k

∑
(h,p)∈S

h
p < 0.5.

2 The number of coin flips is minimized: min
∑

(h,p)∈S p .

3 The probability is nontrivial: p > 0.

p too small, implies that condition (1) is violated with a reasonable
probability.
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Decision Tree Experiments
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Online Linear Learning results (with Nikos)
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Demonstration



Fringe Benefits

This approach has many nice properties.

1 Always consistent.

2 Computationally efficient given any efficient optimization-style
classification algorithm.

3 Unlabeled data efficient.

4 Online Compatible.

5 Label Efficient.

6 Compatible with any optimization-style classification
algorithm.

7 Works for other loss functions.

8 Interpolates to supervised learning.

9 Allows you to switch learning algorithms later (!)

10 Empirically, yields substantial label savings.
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The Future

Active Learning is only one kind of interactive learning. Does a
similar strategy work with other forms of interactive learning?
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