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Examples of Interactive Learning

Repeatedly:

1 A user comes to Microsoft (with history of previous visits, IP
address, data related to an account)

2 Microsoft chooses information to present (urls, ads, news stories)

3 The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again,...)

Microsoft wants to interactively choose content and use the observed

feedback to improve future content choices.



Another Example: Clinical Decision Making

Repeatedly:

1 A patient comes to a doctor with
symptoms, medical history, test results

2 The doctor chooses a treatment

3 The patient responds to it

The doctor wants a policy for choosing
targeted treatments for individual patients.



The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.



The Evaluation Problem

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

Method 1: Deploy algorithm in the world.

Very Expensive!
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The �Direct method�

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True

a1 a2
x1

.8/.8/.8 ?/1

x2

/.3 .2 /.2
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Basic observation 1: Generalization alone is not su�cient.



The �Direct method�

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True
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Basic observation 2: Exploration is required to succeed.



The �Direct method�

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True

a1 a2
x1 .8/.8/.8 ?/.514/1
x2 .3/.3/.3 .2 /.014 /.2

Basic observation 3: Prediction errors not controlled exploration.



Outline

1 Using Exploration
1 Problem De�nition
2 Direct Method fails
3 Importance Weighting
4 Missing Probabilities
5 Doubly Robust

2 Doing Exploration



Method 3: The Importance Weighting Trick

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Collect T exploration samples of the form

(x , a, ra, pa),

where
x = context
a = action
ra = reward for action
pa = probability of action a
then evaluate:

Value(π) = Average

(
ra 1(π(x) = a)

pa

)
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The Importance Weighting Trick

Theorem

For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π) ]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: [Part 1] Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)



What if you don't know probabilities?

Suppose p was:

1 misrecorded �We randomized some actions, but then the
Business Logic did something else.�

2 not recorded �We randomized some scores which had an
unclear impact on actions�.

3 nonexistent �On Tuesday we did A and on Wednesday B�.

Learn predictor p̂(a|x) on (x , a)∗ data.

De�ne new estimator: V̂ (π) = Êx ,a,ra

[
raI (π(x)=a)
max{τ,p̂(a|x)}

]
where τ =

small number.

Theorem: For all IID D, for all policies π with p(a|x) > τ

|Value(π)− EV̂ (π)| ≤
√
reg(p̂)

τ

where reg(p̂) = Ex∼D,a∼p(a|x)[(p(a|x)− p̂(a|x))2] = squared loss
regret.
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[
raI (π(x)=a)
max{τ,p̂(a|x)}

]
where τ =

small number.

Theorem: For all IID D, for all policies π with p(a|x) > τ

|Value(π)− EV̂ (π)| ≤
√
reg(p̂)

τ

where reg(p̂) = Ex∼D,a∼p(a|x)[(p(a|x)− p̂(a|x))2] = squared loss
regret.



Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value'(π) = Average

(
(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem

For all policies π and all (x ,~r):

|Value'(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!
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How do you test things?

Contextual Bandit datasets tend to be highly proprietary. What can
you do?

1 Pick classi�cation dataset.
2 Generate (x , a, r , p) quads via uniform random exploration of

actions

Apply transform to RCV1 dataset.
wget http://hunch.net/~jl/VW_raw.tar.gz
wget http://hunch.net/~jl/cbify.cc
Output format is:
action:cost:probability | features
Example:
1:1:0.5 | tuesday year million short compan vehicl line stat �nanc
commit exchang plan corp subsid credit issu debt pay gold bureau
prelimin re�n billion telephon time draw basic relat �le spokesm reut
secur acquir form prospect period interview regist toront resourc
barrick ontario qualif bln prospectus convertibl vinc borg arequip
...

http://hunch.net/~jl/VW_raw.tar.gz
http://hunch.net/~jl/cbify.cc
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How do you train?

1 Learn r̂(a, x).

2 Compute for each x the double-robust estimate for each
a′ ∈ {1, ...,K}:

(r − r̂(a, x))I (a′ = a)

p(a|x)
+ r̂(a′, x)

3 Learn π using a cost-sensitive classi�er. We'll use Vowpal
Wabbit: http://hunch.net/~vw

vw �cb 2 �cb_type dr rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24 -l 0.25
Progressive 0/1 loss: 0.04582

vw �cb 2 �cb_type ips rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24 -l 0.125
Progressive 0/1 loss: 0.05065

vw �cb 2 �cb_type dm rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24 -l 0.125

Progressive 0/1 loss: 0.04679

http://hunch.net/~vw
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Experimental Results

IPS = Inverse probability
DR = Doubly Robust, with r̂(a, x) = wa · x
Filter Tree = Cost Sensitive Multiclass classi�er
O�set Tree = Earlier method for CB learning with same
representation
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Summary of methods

1 Deployment. Aka A/B testing. Gold standard for
measurement and cost.

2 Direct Method. Often used by people who don't know what
they are doing. Some value when used in conjunction with
careful exploration.

3 Inverse probability. Unbiased, but possibly high variance.

4 Inverse propensity score. For when you don't know or don't
trust recorded probabilities. Debugging tool that gives hints,
but caution is in order.

5 O�set Tree. (not discussed) Only known logarithmic time
method.

6 Double robust. Best known o�ine method. Unbiased +
reduced variance.



Reminder: Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean? E�ciently competing with some large
reference class of policies Π = {π : X → A}:

Regret = max
π∈Π

average
t
(rπ(x) − ra)



What is exploration?

Exploration = Choosing not-obviously best actions to gather
information for better performance in the future.

There are two kinds:

1 Deterministic. Choose action A, then B , then C , then A, then
B , ...

2 Randomized. Choose random actions according to some
distribution over actions.

We discuss Randomized here.

1 There are no good deterministic exploration algorithms in this
setting.

2 Supports o�-policy evaluation. (See �rst half.)

3 Randomize = robust to delayed updates, which are very
common in practice.
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Outline

1 Using Exploration
1 Problem De�nition
2 Direct Method fails
3 Importance Weighting
4 Missing Probabilities
5 Doubly Robust

2 Doing Exploration
1 Exploration First
2 ε-Greedy
3 epoch Greedy
4 Policy Elimination
5 Thompson Sampling



Explore τ then Follow the Leader (Explore-τ )

Initially, h = ∅
For the �rst τ rounds

1 Observe x.
2 Choose a uniform randomly.
3 Observe r , and add (x , a, r) to h.

For the next T rounds, use empirical best.

Suppose all examples are drawn from a �xed distribution D(x ,~r).

Theorem: For all D,Π,Explore-τ has regret O

(
τ
T

+
√
|A| ln |Π|

τ

)
with high probability.

Proof: After τ rounds, a large deviation bound implies empirical
average value of a policy deviates from expectation E(x ,~r)∼D [rπ(x)]

by at most

√
|A| ln(|Π|/δ)

τ , so regret is bounded by

τ
T

+ T
T

√
|A| ln(|Π|/δ)

τ .

At optimal τ? O
(

( |A| ln |Π|
T

)1/3
)
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What does this mean?

1 +Easiest approach: o�ine prerecorded exploration can feed
into any learning algorithm. See �rst half.

2 -Doesn't adapt when world changes.

3 -Underexploration common. Think of clinical trials.

Can we do better?
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ε-Greedy

1 Observe x.
2 With probability 1− ε

1 Choose learned a

2 Observe r , and learn with (x , a, r , 1− ε).

With probability ε
1 Choose Uniform random other a
2 Observe r , and learn with (x , a, r , ε/(|A| − 1)).

Theorem: ε-Greedy has regret O

(
ε+

√
|A| ln |Π|

T ε

)
For optimal epsilon? O

((
|A| ln |Π|

T

)1/3)
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What does this mean?

1 -Harder Approach: Need online learning algorithm to use.

2 +Adapts when world changes.

3 -Overexploration common. Bad possibilities keep being
explored.

Can we do better?
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Epoch Greedy

At every timestep t, the learned policy has an empirical
performance known up to some precision εt which can be estimated.

1 Observe x.

2 With probability 1− εt
1 Choose learned a

2 Observe r , update εt and learn with (x , a, r , 1− εt).
With probability εt

1 Choose Uniform random other a
2 Observe r , update εt and learn with (x , a, r , εt/(|A| − 1)).

Theorem: Epoch Greedy has regret O

((
|A| ln |Π|

T

)1/3)
with high

probability.
Autotuning!
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What does this mean?

1 -Harder Approach: Need online learning algorithm to use +
keeping track of deviation bound.

2 +Adapts when world changes.

3 +Neither under nor over exploration.

Is it possible to do better?
Supervised τ -�rst/ε-greedy/epoch-greedy

Regret O

((
ln |Π|
T

) 1

2

)
O

((
|A| ln |Π|

T

) 1

3

)
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Better 1: Policy Elimination

Policy_Elimination

Let Π0 = Π and µt = 1/
√
Kt and ηt(π) =empirical reward

For each t = 1, 2, . . .

1 Choose distribution P over Πt−1 s.t. for every remaining
policy π, the expected variance of a value estimate is small.

2 observe x

3 Let p(a) = fraction of P choosing a given x .

4 Choose a ∼ p and observe reward r

5 Let Πt = remaining near empirical best policies.

Theorem: With high probability Policy_Elimination has regret

O

(√
|A| ln |Π|

T

)
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What does this mean?

1 -Doesn't adapt when world changes.

2 ++Much more e�cient exploration. Only e�cient in special
cases.

3 - -Much Harder Approach: Need to keep track of policies,
which is often intractable.

Adapting algorithms exist (EXP4).
More e�cient versions exist (RUCB), but not yet e�cient enough.
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Can you do better?

Not in general.

Theorem: For all algorithms, there exists problems imposing regret:

Ω̃

(√
|A| ln |Π|

T
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Better 2: Thompson Sampling

Always maintain a Bayesian posterior over policies.
On each round sample policy from posterior, and act according to
it.

An e�cient special case: Gaussian Posterior.

Thompson Sampling

Let w = mean 0 multivariate gaussian.
For each t = 1, 2, . . .

1 Draw w ′ ∼ w

2 Observe x

3 Choose a = maxa′ w
′xa′

4 Observe reward r .

5 Bayesian update w with (x , a, r).



Better 2: Thompson Sampling

Always maintain a Bayesian posterior over policies.
On each round sample policy from posterior, and act according to
it.
An e�cient special case: Gaussian Posterior.

Thompson Sampling

Let w = mean 0 multivariate gaussian.
For each t = 1, 2, . . .

1 Draw w ′ ∼ w

2 Observe x

3 Choose a = maxa′ w
′xa′

4 Observe reward r .

5 Bayesian update w with (x , a, r).



What does it mean?

1 +E�cient special cases for Gaussian posteriors.

2 +Known to work well empirically sometimes.

3 -Not robust to model misspeci�cation: Ω̃
(
|Π|
T

)
regret.



The current state

Starter

Baseline

Purring

Shiny

Something to try

You can see the edge of the understood world here. We hope to see
further soon.
Further discussion: http://hunch.net
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