Is Learning the Whole
Easier than Learning the
Sum of the Parts?

Rich Caruana
Cornell University

Thank You.

Questions?

Yes, and No.

Yes, and No?




Approach: Inductive Transfer

AK.A.
Bias Learning
Multitask learning
arning (Internal) Representations
L g-to-learn
Lifelong learning
Continual learning
Speedup learning
Hints
Hierarchical Bayes

Toy Multitask Learning Example

» 4 tasks defined on eight bits B-Bg:

o all tasks ignore input bits B,-Bg
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Goal

Not to learn a complex structure

— Not worried about consistency among parts

— No constraints among predictions

Instead, trying to learn a simple thing (atom) well
by learning a more complex structure

— Learn you risk of dying from pneumonia

— Learn to steer a car

— Learn to recognize doorknobs

Goal is better generalization from finite data
Not faster, nor more intelligible, not one model, ...

Toy Example: STL &

Task 1 Task 2 Task 3 Task 4
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Toy Example: Toy Example:
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STL: Task 1 =
MTL: Tasks 1+2 -+
MTL: Tasks 1+2+3+4 &
STL: Task 1 (25 hidden units) > ]

Test-Set % Correct (Average of 25 trials)

PO OO 0000000000000 00000oooooooT

STL: Task 1 o <
MTL: Tasks 1+2 Task1 + Shuffled Tasks 2,3,4 o
MTL: Tasks 1+2+3+4 © Task 1 + 3 Random Tasks -+

Test-Set % Correct (Average of 25 trials)

100000 150000
100000 150000 Traini Epochs
Training Epochs

Outline Predicting Pneumonia Risk
Application of MTL to Pneumonia Risk e
MTL nets cluster tasks by function
When is MTL likely to be useful?
MTL in K-Nearest Neighbor
MTL for Bayes Net Structure Learning
Learn globally, predict locally?

Chest X-Ray

Different approach to structure learning

Model Compression Pre-Hospital
Attributes




Predicting Pneumonia Risk

Pneumonia: Hospital Labs as Inputs

Pneumonia Pneumonia
Risk Risk

STL: Inputs = Basic Labs —o—
STL: Inputs = Basic + Future Labs -+

Test-Set Error Rate

—

' ] Pre-Hospital Pre-Hospital

I
0.2 0.3 0.4
Fraction of Population (FOP Attributes Attributes

Pneumonia #1: Medis Pneumonia #1:

Mortality yooerit” White BIood™™ b Gum <——— FUTURE LABS

K" Rank Cell Count

RANKPROP e OUTPUT LAYER
OUTPUT \ =

SHARED HIDDEN LAYER

Test-Set Error Rate

INPUT LAYER

Stridor —= QO

Diabetic —

INPUTS

Asthmatic —>O
Chest Pain —= )
Wheezing —=O)
Heart Mumur —=Q)




Pneumonia #2: Pneumonia #2: Results

"Single_Task_Learning’
"Multitask Learning" ——

10X fewer cases (2286 patients) PR
10X more input features (200 feats)

missing features (5% overall, up to 50%)
main task: dire outcome

ROC Area

30 extra tasks currently available
dire outcome disjuncts (death, ICU, cardio, ...)

length of stay in hospital

cost of hospitalization

etiology (gramnegative, grampositive, ...)

120 Synthetic Tasks Peaks Functions:

:28: PEAKS: 1_of_6 with 5_of_6 train=100
backprop net not told how tasks are related, but ... 016 . : i ——
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Peaks Functions:

Percent Error on Test Set

60 80
Size of Training Set

courtesy Joseph O’Sullivan

Peaks Functions:

Rank Correlation of the 64 Hidden Units

2 3 4 5 6
Score for Number of Features in Common

MTL nets tasks
by function

Related # Correlated

o Some peaks functions have zero correlation yet
are strongly related and help each other:

— P 001 = If (A >0.5) Then B, Else C

— P 005 = If (A > 0.5) Then C, Else B

— P 014 =If (A > 0.5) Then D, Else E

o Related ~ Mutual Information




MTL in K-Nearest Neighbor MTL/KNN for Pneumonia #1

o Most learning methods can MTL:
— shared representation
— combine performance of extra tasks

— control the effect of extra tasks

o MTL in K-Nearest Neighbor:
— shared representation: distance metric
— MTILPerf = (1-A)+MainPerf + X (A+ExtraPert)

Rank Error (Independent Test Set)

0.2 0.4 0.6 0.8
Weight of Extra Tasks Compared with Main Task

MTL/KNN for Pneumonia #1 Related # Correlated

"STL--lambda=0.0" —o— o KNN tasks do not need to be correlated for the
"MTL--lambda=0.5" —+ . . 2 o

distance function learned for one to be effective
for another

o Note there are no constraints (no structure) on
related tasks

Rank Sum Error (Independent Test Set)

500 1000 1500 2000 2500 3000
Total Patterns Used for Training (Train+Halt




Learning the Structure of
q Related Tasks

Alexandru Niculescu-Mizil
Rich Caruana

Cornell University

i Bayesian Networks

= A Bayesian Network is a compact
encoding of the joint distribution of a
set of variables.
X(@ = A Bayes Net consists of:
@ = A DAG that encodes the dependency

structure of the domain.
= A set of conditional probability functions.

.K®

ABlo| 1 = One can learn from data:
0] 6,]1-6, = The dependency structure.

= The parameters of the conditional
1|6,]1-6, probability functions.

i Motivation

= Learning Bayes Net structure from data can provide
useful information.

= E.g. from gene expression data, one can discover regulatory
relations between genes for one yeast type.

[Friedman et al. "00]
= Related tasks should have similar dependency
structures, so more accurate Bayes Net structures
can be learned by taking advantage of these
similarities. (Inductive Transfer).

= E.g. from gene expression data for different species of yeast
more accurate regulatory relations can be learned for each of
them by taking advantage of the fact that different species of
yeast should have similar regulatory structures.

i Multi-task Structure Learning
®

= D;,D,, ... D, complete iid data from k related
- tasks.
;k{@ = Simultaneously learn k Bayes Net structures, one
© for each task.
= Take advantage of the similarity between tasks
by biasing the learning algorithm towards learning

@ similar structures.
®-
v /g@ = Configuration = a set of structures, one for each
© ® task.




i Probability of a Configuration

.® = The posterior probability of a

\@ configuration given the data:

©*“N

® P(Gh, .. Gk|D1, e D) o P(Gr, ey Gi)P(Dr, ooey DG, .., G)

® :
N Under some assumptions we get:
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i The Prior

= Penalize differences between structures. Prior for

‘\‘ two tasks:
' ,<§@ P(G1,Ga) = ZsP(G1)P(G2) [ (1-65)
@ (X3, X5)€

@ - G1AG

@ =
®- P(Gy,...Gk) =2 < 11 P(thj)>
$ @ 1<i<j<k
@‘/é = § is a parameter that needs to be specified

i Multi-Task Structure Learning

= Find a configuration with a high posterior
probability via greedy hill climbing:

©«®)

1. Start from an initial configuration

2. Find neighboring configuration with the highest
probability

If the configuration found at step 2 has higher
probability than the current one then move to it and

iterate.
Else return the current configuration.
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i KL-Divergence Performance
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= MTL reduces the KL-divergence by 7% - 26%
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ALARM-INb ALARM‘ INSURANCE-IND INSURANC
= MTL reduces the number of incorrect arcs by 20% -
55%.

Edit Distance

u 3 o 8
1
n

True structure Structure learned by MTL

Edit dist: 12

Structure learned by STL

Edit dist: 19

When to use MTL?

multiple error metric
quantized or stochastic tasks

sequential transfer

hierarchical tasks

Multiple Tasks Occur Naturally

o Mitchell’s Calendar Apprentice (CAP)
— time-of-day (9:00am, 9:30am, ...)
— day-of-week (M, T, W, ...)
— duration (30min, 60min, ...)
— location (Tom'’s office, Dean’s office, 54009, ...)

o Often correlation, but no constraints (structure),
among tasks

10



Using Future to Predict Present Decomposable Tasks

. c = ICU v Complication v Death
medical domains

autonomous vehicles I \\V/ \ W‘
OUTPUT LAYER and robots \ /
4 °

L
time series
SHARED HIDDEN LAYER — stock market
— economic forecasting
INPUT LAYER . .
— weather prediction
— spatial series

many more

Focus of Attention: ALVINN Different Data Distributions

PNEUMONIA PREDICTION

O O OO OO OO

Steering Direction SYMPTOMS

Hospital 1: 50i cases, rural (Ithaca or Williamstown)
Hospital 2: 500 cases, urban (IDes Moines)
Hospital 3: 1000 cases, elderly suburbs (Florida)

Single MultiTask Loarning Hospital 4: 5000 cases, young urban (LA,SK)
Task Leaning




Some Inputs are Better as Outputs Some Inputs are Better as Outputs

o MainTask = Sigmoid(A)+Sigmoid(B) e MainTask = Sigmoid(A)+Sigmoid(B)

e A,BE(-5.0,+5.0) o Extra Features:
— EF1 = Sigmoid(A) + A * Noise

— EF2 = Sigmoid(B) + A * Noise
— where A € (0.0, 10.0), Noise € (-1.0, 1.0)

.U, V),
STL+IN Main Output Main Output Extra Outpu!
fully connected |

hidden layer

o Inputs A and B coded via 10-bit binary code

STL Main om:put

fully connected
hidden layer

7= Z
I 6006000 G663650066 86566608 Go65666666
binary inputs binary inputs [RRRRRARRRERRRRRARARY | [RERRRRRRRI HII\I\III

coding for A coding for B binary inputs binary inputs binary inputs nary inputs
coding for A coding for B coding for A Cehiny fors

Regular Inputs Regular Inputs Regular Inputs

Inputs Better as Outputs: Results

Mulitask Leaming

"STL+IN" —~—

Test Set RMSE
Dire Outcome ROC Area

\\\ %
.

Single Task Leaming

0.0 1.0 20 3.0 4.0 50 6.0 7.0 80 9.0 10.0
Feature Noise Scale




How You Learn can be Independent
of How You Make Predictions

» To get best performance, must learn sets of
related tasks in parallel
» Resulting models can be complex
— forced sharing often hursts more than it helps

— learned models can be large

Inductive Transfer Does Not Mean

Should Learn One Model
e A helps B #B helps A

— sometimes benefit is mutual
— sometimes A helps B but B hurts A
— sometimes model best for A is suboptimal for B

Transfer vs. Structured Outputs

e Multitask Learning:
- T, =1,(gx)
- T, =1,(g(x))

13



Transfer vs. Structured Outputs

o Multitask Learning:
=T, =1,(gx), a(x, x"))
- T, = f,(g(x), b(x, X))

Global Inference in Learning for
Natural Language Processing

Vasin Punyakanok
Department of Computer Science

University of Illinois at Urbana-Champaign

Joint work with Dan Roth, Wen-tau Yih, and
Dav Zimak

Transfer vs. Structured Outputs

o Multitask Learning:
- T, =f,(g(x)
- T, =1,(g(x))

o Structure Learning:
— y; = f,(x) (before constraint)
— ¥, = f,(x)) (before constraint)
— Y1 Yo = g, (%), 1,(x)) (structural constraints in g)

Learning and Inference

IBT: Inference-based Training

14



Comparisons of Learning Approaches

Coupling (IBT)
» Optimize the true global objective function (this should
be better in the limit)

Decoupling (L+1)
» More efficient
» Reusability of classifiers
o Modularity in training
— No global examples required

— Can use appropriate model for each piece of problem

Basic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

New Ensemble Method:

e Train many different models:
— different algorithms
— different |
— all trained on sam
— all trained to “nat > optimization criterion
e Add all models to library:
— no model selection
— no validation set
— some models bad, some models good, a few models excellent
— yields diverse set of models, some of which are good on almost any metric
o Forward stepwise model selection from library:
start with empty ensemble
try adding each model one-at-a-time to ensemble
commit model that maximizes performance on metric on a test set
repeat until performance stops getting better

Basic Ensemble Selection Algorithm

Model Library AUC Score on the Ensemble
1k validation set

Model 1 0.8453
Model 2 0.8726
Model 3 0.9164
Model 4 0.8142
Model 5 0.8453
Model 6 0.8745
Model 7 0.9024
Model 8 0.7034
Model 9 0.8342
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Basic Ensemble Selection Algorithm Basic Ensemble Selection Algorithm

Model Library AUC Score on the Ensemble Model Library Ensemble
1k validation set

Model 1 0.8453 Model 1 Model 3 0.9164
Model 2 0.8726 Model 2

Model 4 0.8142 Model 4
Model 5 0.8453 Model 5
Model 6 0.8745 Model 6
Model 7 0.9024 Model 7
Model 8 0.7034 Model 8
Model 9 0.8342 Model 9

Basic Ensemble Selection Algorithm Basic Ensemble Selection Algorithm

Model Library AUC Score on the Ensemble Model Library AUC Score on the Ensemble
1k validation set 1k validation set

Model 1 0.8327 0.8453 | Model 3 0.9164 Model 1 0.8327 Model 3 0.9164
Model 2 0.8702 0.8726 Model 2 0.8702

Model 4 0.9284 0.8142 Model 4 0.9284
Model 5 + Ensemble = 0.9047 0.8453 Model 5 + Ensemble = 0.9047
Model 6 0.8832 0.8745 Model 6 0.8832
Model 7 0.9126 0.9024 Model 7 0.9126
Model 8 0.8245 0.7034 Model 8 0.8245
Model 9 0.9384 0.8342




Basic Ensemble Selection Algorithm Basic Ensemble Selection Algorithm

Model Library Ensemble Model Library AUC Score on the Ensemble
1k validation set

e Model 3 09164 Model 1 0.8502 08307| Model 3 09164
Model 2 Model 9 09384 Model 2 0.9243 0.8702| Model 9 0.9384

Model 4 Model 4 0.8992 0.9284
Model 5 Model 5 + Ensemble = 0.8090 0.9047
Model 6 Model 6 0.9424 0.8832
Model 7 Model 7 0.9045 0.9126
Model 8 Model 8 0.9243 0.8245

Basic Ensemble Selection Algorithm Basic Ensemble Selection Algorithm

Model Library AUC Score on the Ensemble Model Library Ensemble
1k validation set

Model 1 0.8502 Model 3 0.9164 Model 1 Model 3 0.9164

Model 2 0.9243 Model 9 09384 Model 2 Model 9 0.9384
Model 6 0.9424

Model 4 0.8992 Model 4

Model 5 + Ensemble = 0.8090 Model 5

Model 7 0.9045 Model 7
Model 8 0.9243 Model 8




Big Problem: Overfitting Best of the Best of the Best

- . . . . Threshold Metrics Rank/Ordering Metrics Probability Metrics
More models ==> better chance of finding combination with good

performance on any given problem and metric,
but ...

Average  Break  Squared  Cross-  Calibratio
Precision Even Point  Error  Entropy n

BEST  0.928 0918 0.975 0.987 0958 0.958 0919 0.944 0.989 0.9533

Model  Accuracy F-Score Lift ROC Area

also better chance of overfitting to the hillclimb set BST-DT  0.860 0.914
RND-FOR  0.866 0:897
ANV 0.817 0,892

Tricks to Reduce Overfitting:

.. . . SVM 0823 0884
Eliminate Inferior Models: prevents mistakes

P . P BAG-DT ~ 0.836 0.878
Ensemble Initialization: give “inertia” to initial ensemble

, . , , o 0.759 0.835
Stepwise Selection with Replacement: stopping point less critical

g 0 0.698 . 0.801
Calibrate Models in Ensemble: all models speak same language &

. . 0.611 734
Bagged Ensemble Selection: reduces variance g 07

0.602 0.696
0.536 0.611

Normalized Scores for ES Ensemble Selection vs Best: 3 NLP Problems

Threshold Metrics Rank/Ordering Metrics Probability Metrics

Average  Break  Squared  Cross-  Calibratio
Precision EvenPoint Error  Entropy n

from Selection

Model  Accuracy F-Score Lift ROC Area Mean ‘ ‘ ‘
B 09560 0.9442 0.9916 0.9965 0.9846 0.9786 0.9795 0.9808 09877 [0.9777
BAYESAY 09258 0.8906 0.9785 0.9851 09773 09557 09504 0.9585 0.9871 [0.9566
BEST  0.9283 09188 09754 09876 09588 09581 09194 09443 09891 |0.9533
AVG_ALL 0.8363 0.8007 09815 09878 09721 09606 0.8271 0.8086 0.9856 |0.9067

STACK_LR 0.2753 0.7772 0.8352 0.7992 0.7860 0.8469 0.3317 -0.9897 0.8221 '0.4982

BST-DT  (0.860 0.854 0.956 0.977 0958 0.952 0929 0.932 0.808  0.914
RND-FOR 0.866 0.871 0958 0.977 0.957 0.948 0.892 0.898 0.702 0.897
ANN 0.817 0.875 0.947 0963 0.926 0.929 0.872 0878  0.826 & 0.892

3
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SVYM 0.823  0.851 0.928 0.961 0.931 0.929 0.882 0.880 0.769 0.884

BAG-DT  0.836  0.849 0.953 0972 0950 0928 0.875 0.901 0.637 0.878

KNN 0.759  0.820 0.914 0.937 0.893 0.898 0.786 0.805 0.706 0.835

BST-STMP 0.698 ~ 0.760 ~ 0.898 0926 0871 0854 0740 0783  0.678 | 0.801 [Art Munson, Claire Cardie, Rich Caruana. EMNLOP/HLDT 2005]




Ensemble Selection

e Good news:

— A carefully selected ensemble that combines many
models outperforms boosting, bagging, random
forests, SVMSs, and neural nets, ... (because it builds
on top of them)

o Bad news:

— The ensembles are too big, too slow, too cumbersome
to use for most applications

Solution: Model Compression

o Pass large amounts of unlabeled data (synthetic data
points or real unlabeled data) through ensemble and
collect predictions

— 100,000 to 10,000,000 synthetic training points
— Extensional representation of the ensemble model

» Train copycat model on this large synthetic train set
to mimic the high-performance ensemble
— Train neural net to mimic ensemble

— Potential to not only perform as well as target ensemble,
but possibly outperform it

Best Ensembles are Big and Ugly!

e Best ensemble for one problem/metric has 422 models:
— 72 boosted trees (28, individual decision trees!)
1 random forest (1024 decision trees)
5 bagged trees (100 decision trees in each model)
44 neural nets (2,200 hidden units,total, >100,000 weights)
115 knn models (both large and expensive!)
38 SVMs (100’s of support vectors in each model)

26 boosted stump models (36,184 stumps total -- could
compr

— 122 individual decision trees
o Best ensemble:
— takes ~1GB to store model
— takes ~2 seconds to execute per test case!

Model Compression

AVERAGE

T T T T
MUNGE —— |
ensemble selection
best single model
best neural net - |

number of hidden units
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Model Compression Generating Synthetic Data: Munging

ensemble selection
best single model
best neural net

L
50k
training size

Generating Synthetic Data: Munging Generating Synthetic Data: Munging

RANDOM o
HEE

=
MUNGE @
TRUE
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Summary of Compression Results

» Neural nets trained to mimic high
performing ensemble selection models

— on average, captures more than 97%
performance of target model

— perform much better than any ANN we could
train on original data

— 1000 times faster than ensemble
— 1000 times smaller than ensemble

Thank You.

Questions?

Why Mimic with Neural Nets?

Decision trees do not work well
thetic data must be very large because of recursive partitioni
— mimic decision trees are enormous (depth > 1000 and > 10° nodes)
making them expensive to store and compute
— single tree does not seem to model ensemble accurately enough
SVMs
— number of support vectors increases quickly with complexity
Artificial Neural nets
can model complex functions with modest # of hidden units
can compress millions of t g cas o thousands of
expense to train, but execution cost is low (just matrix multiplies)
models with few thousand weights have small footprint
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