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Is Learning the Whole
Easier than Learning the

Sum of the Parts?

Rich Rich CaruanaCaruana
Cornell UniversityCornell University

Yes, and No.Yes, and No.

Thank You.

Questions?
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Approach: Inductive TransferApproach: Inductive Transfer
 A.K.A.A.K.A.

–– Bias LearningBias Learning
–– Multitask learningMultitask learning
–– Learning (Internal) RepresentationsLearning (Internal) Representations
–– Learning-to-learnLearning-to-learn
–– Lifelong learningLifelong learning
–– Continual learningContinual learning
–– Speedup learningSpeedup learning
–– HintsHints
–– Hierarchical Hierarchical BayesBayes
–– ……

Goal

 NotNot to learn a complex structure to learn a complex structure
–– NotNot worried about consistency among parts worried about consistency among parts
–– NoNo constraints among predictions constraints among predictions

 Instead, trying to learn a simple thing (atom) Instead, trying to learn a simple thing (atom) wellwell
by learning a more complex structureby learning a more complex structure
–– Learn you risk of dying from pneumoniaLearn you risk of dying from pneumonia
–– Learn to steer a carLearn to steer a car
–– Learn to recognize doorknobsLearn to recognize doorknobs
–– ……

 Goal is better generalization from finite dataGoal is better generalization from finite data
 NotNot faster,  faster, notnot more intelligible,  more intelligible, notnot one model,  one model, ……

Toy Multitask Learning Example

 4 tasks defined on eight bits B4 tasks defined on eight bits B11-B-B88::

 all tasks ignore input bits Ball tasks ignore input bits B77-B-B88

  

Task 1 = B1 ∨Parity(B2 −B6 )
Task 2 = ¬B1 ∨Parity(B2 −B6 )
Task 3 = B1 ∧Parity(B2 −B6 )
Task 4 = ¬B1 ∧Parity(B2 −B6 )

Toy Example: STL & MTL
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Toy Example: Results Toy Example: Why?

Outline

 Application of MTL to Pneumonia RiskApplication of MTL to Pneumonia Risk
 MTL nets cluster tasks by functionMTL nets cluster tasks by function
 When is MTL likely to be useful?When is MTL likely to be useful?
 MTL in K-Nearest NeighborMTL in K-Nearest Neighbor
 MTL forMTL for Bayes  Bayes Net Structure LearningNet Structure Learning
 Learn globally, predict locally?Learn globally, predict locally?
 Different approach to structure learningDifferent approach to structure learning
 Model CompressionModel Compression

Predicting Pneumonia RiskPredicting Pneumonia Risk
Pneumonia
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Pneumonia: Hospital Labs as Inputs Predicting Pneumonia RiskPredicting Pneumonia Risk
Pneumonia
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Pneumonia #1: Medis Pneumonia #1: Results

  -10.8%  -11.8%  -6.2%   -6.9%   -5.7%
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Pneumonia #2: PORT

 10X fewer cases (2286 patients)10X fewer cases (2286 patients)
 10X more input features (200 feats)10X more input features (200 feats)
 missing features (5% overall, up to 50%)missing features (5% overall, up to 50%)
 main task:  dire outcomemain task:  dire outcome
 30 extra tasks currently available30 extra tasks currently available

–– dire outcomedire outcome disjuncts  disjuncts (death, ICU, cardio, ...)(death, ICU, cardio, ...)
–– length of stay in hospitallength of stay in hospital
–– cost of hospitalizationcost of hospitalization
–– etiology (etiology (gramnegativegramnegative,, grampositive grampositive, ...), ...)
–– . . .. . .

Pneumonia #2: Results

MTL reduces error  >10%

120 Synthetic Tasks
 backprop backprop net not told how tasks are related, but ...net not told how tasks are related, but ...
 120 120 Peaks FunctionsPeaks Functions:  A,B,C,D,E,F  :  A,B,C,D,E,F  ∈ ∈  (0.0,1.0) (0.0,1.0)

–– P 001 = If (A > 0.5) Then B, Else CP 001 = If (A > 0.5) Then B, Else C
–– P 002 = If (A > 0.5) Then B, Else DP 002 = If (A > 0.5) Then B, Else D
–– P 014 = If (A > 0.5) Then E, Else CP 014 = If (A > 0.5) Then E, Else C
–– P 024 = If (B > 0.5) Then A, Else FP 024 = If (B > 0.5) Then A, Else F
–– P 120 = If (F > 0.5) Then E, Else DP 120 = If (F > 0.5) Then E, Else D

Peaks Functions: Results
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Peaks Functions: Results

courtesy Joseph O’Sullivan

MTL MTL netsnets  clustercluster tasks tasks
by  by  functionfunction

Peaks Functions: Clustering
 Some peaks functions have zero correlation yetSome peaks functions have zero correlation yet

are strongly related and help each other:are strongly related and help each other:

–– P 001 = If (A > 0.5) Then B, Else CP 001 = If (A > 0.5) Then B, Else C
–– ……
–– P 005 = If (A > 0.5) Then C, Else BP 005 = If (A > 0.5) Then C, Else B
–– ……
–– P 014 = If (A > 0.5) Then D, Else EP 014 = If (A > 0.5) Then D, Else E

 Related ~ Mutual InformationRelated ~ Mutual Information

Related ≠ Correlated
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MTL in K-Nearest Neighbor

 Most learning methods can MTL:Most learning methods can MTL:
–– shared representationshared representation
–– combine performance of extra taskscombine performance of extra tasks
–– control the effect of extra taskscontrol the effect of extra tasks

 MTL in K-Nearest Neighbor:MTL in K-Nearest Neighbor:
–– shared representation: distance metricshared representation: distance metric
–– MTLPerf MTLPerf = (1-= (1-λλ))∗∗MainPerf MainPerf + + Σ  Σ  ((λ∗λ∗ExtraPerfExtraPerf))

MTL/KNN for Pneumonia #1

MTL/KNN for Pneumonia #1
 KNN tasks do not need to be correlated for theKNN tasks do not need to be correlated for the

distance function learned for one to be effectivedistance function learned for one to be effective
for anotherfor another

 Note there are no constraints (no structure) onNote there are no constraints (no structure) on
related tasksrelated tasks

Related ≠ Correlated
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Learning the Structure of
Related Tasks

Alexandru Niculescu-Mizil
Rich Caruana

Cornell University

Bayesian Networks
 A Bayesian Network is a compact

encoding of the joint distribution of a
set of variables.

 A Bayes Net consists of:
 A DAG that encodes  the dependency

structure of the domain.
 A set of conditional probability functions.

 One can learn from data:
 The dependency structure.
 The parameters of the conditional

probability functions.

B

C

E

D

A

1-θ1 θ11
1-θ0 θ00

10BA

Motivation
 Learning Bayes Net structure from data can provide

useful information.
 E.g. from gene expression data, one can discover regulatory

relations between genes for one yeast type.
                                                            [Friedman et al. `00]

 Related tasks should have similar dependency
structures, so  more accurate Bayes Net structures
can be learned by taking advantage of these
similarities. (Inductive Transfer).
 E.g. from gene expression data for different species of yeast

more accurate regulatory relations can be learned for each of
them by taking advantage of the fact that different species of
yeast should have similar regulatory structures.

Multi-task Structure Learning
 D1 ,D2 , ... ,Dk complete iid data from k related

tasks.
 Simultaneously learn k Bayes Net structures, one

for each task.
 Take advantage of the similarity between tasks

by biasing the learning algorithm towards learning
similar structures.

 Configuration = a set of structures, one for each
task.
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Probability of a Configuration
 The posterior probability of a

configuration given the data:

 Under some assumptions we get:B

C
E

D

A

B
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The Prior
 Penalize differences between structures. Prior for

two tasks:

 For more than two tasks:

   is a parameter that needs to be specified
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Multi-Task Structure Learning
 Find a configuration with a high posterior

probability via greedy hill climbing:

1. Start from an initial configuration
2. Find neighboring configuration with the highest

probability
3. If the configuration found at step 2 has higher

probability than the current one then move to it and
iterate.
Else return the current configuration.
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KL-Divergence Performance

 MTL reduces the KL-divergence by 7% - 26%
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Edit Distance Performance

 MTL reduces the number of incorrect arcs by 20% -
55%.
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Edit dist: 12

Edit dist: 19

When to use MTL?
 using future to predict presentusing future to predict present
 time seriestime series
 disjunctive/conjunctive tasksdisjunctive/conjunctive tasks
 multiple error metricmultiple error metric
 quantized or stochastic tasksquantized or stochastic tasks
 focus of attentionfocus of attention
 sequential transfersequential transfer
 different data distributionsdifferent data distributions
 hierarchical taskshierarchical tasks
 some input features work better as outputssome input features work better as outputs

Multiple Tasks Occur Naturally

 MitchellMitchell’’s Calendar Apprentice (CAP)s Calendar Apprentice (CAP)
–– time-of-day (9:00am, 9:30am, ...)time-of-day (9:00am, 9:30am, ...)
–– day-of-week (M, T, W, ...)day-of-week (M, T, W, ...)
–– duration (30min, 60min, ...)duration (30min, 60min, ...)
–– location (Tomlocation (Tom’’s office, Deans office, Dean’’s office, 5409, ...)s office, 5409, ...)

 Often correlation, but no constraints (structure),Often correlation, but no constraints (structure),
among tasksamong tasks
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Using Future to Predict Present

 medical domainsmedical domains
 autonomous vehiclesautonomous vehicles

and robotsand robots
 time seriestime series

–– stock marketstock market
–– economic forecastingeconomic forecasting
–– weather predictionweather prediction
–– spatial seriesspatial series

 many moremany more

Decomposable Tasks
                      DireOutcomeDireOutcome  = = ICU v Complication v DeathICU v Complication v Death

INPUTS

Focus of Attention: ALVINN Different Data Distributions

 Hospital 1: 50 cases, rural (Ithaca or Williamstown)Hospital 1: 50 cases, rural (Ithaca or Williamstown)
 Hospital 2: 500 cases, urban (Des Moines)Hospital 2: 500 cases, urban (Des Moines)
 Hospital 3: 1000 cases, elderly suburbs (Florida)Hospital 3: 1000 cases, elderly suburbs (Florida)
 Hospital 4: 5000 cases, young urban (LA,SF)Hospital 4: 5000 cases, young urban (LA,SF)
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Some Inputs are Better as Outputs
 MainTask MainTask = Sigmoid(A)+Sigmoid(B)= Sigmoid(A)+Sigmoid(B)
 A, B A, B ∈ (−5.0, +5.0)∈ (−5.0, +5.0)

 Inputs A and B coded via 10-bit binary codeInputs A and B coded via 10-bit binary code

Some Inputs are Better as Outputs
 MainTask MainTask = Sigmoid(A)+Sigmoid(B)= Sigmoid(A)+Sigmoid(B)
 Extra Features:Extra Features:

–– EF1 = Sigmoid(A) + EF1 = Sigmoid(A) + λλ * Noise * Noise
–– EF2 = Sigmoid(B) + EF2 = Sigmoid(B) + λλ * Noise * Noise
–– where where λ ∈ λ ∈ (0.0, 10.0), Noise(0.0, 10.0), Noise ∈  ∈ (-1.0, 1.0)(-1.0, 1.0)

Inputs Better as Outputs: Results Inputs Better as Outputs: Results
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Inductive Transfer Does Not Mean
Should Learn One Model

Inductive Transfer Does Not Mean
Should Learn One Model

 A helps B A helps B ≠≠ B helps A B helps A
–– sometimes benefit is mutualsometimes benefit is mutual
–– sometimes A helps B but B hurts Asometimes A helps B but B hurts A
–– sometimes model best for A is suboptimal for Bsometimes model best for A is suboptimal for B

How You Learn can be Independent
of How You Make Predictions

 To get best performance, must learn sets ofTo get best performance, must learn sets of
related tasks in parallelrelated tasks in parallel

 Resulting models can be complexResulting models can be complex
–– forced sharing often hurts more than it helpsforced sharing often hurts more than it helps
–– learned models can be largelearned models can be large

 Multitask Learning:Multitask Learning:
–– TT11 = f = f11(g(x))(g(x))
–– TT22 = f = f22(g(x))(g(x))

Transfer vs. Structured Outputs
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 Multitask Learning:Multitask Learning:
–– TT11 = f = f11(g(x), a(x, x`))(g(x), a(x, x`))
–– TT22 = f = f22(g(x), b(x, x``))(g(x), b(x, x``))

Transfer vs. Structured Outputs
 Multitask Learning:Multitask Learning:

–– TT11 = f = f11(g(x))(g(x))
–– TT22 = f = f22(g(x))(g(x))

 Structure Learning:Structure Learning:
–– yy11 = f = f11(x) (before constraint)(x) (before constraint)
–– yy22 = f = f22(x) (before constraint)(x) (before constraint)
–– yy1, 1, yy22 = g(f = g(f11(x), f(x), f22(x)) (structural constraints in g)(x)) (structural constraints in g)

Transfer vs. Structured Outputs

Global Inference in Learning for
Natural Language Processing

Global Inference in Learning for
Natural Language Processing

Vasin PunyakanokVasin Punyakanok
Department of Computer ScienceDepartment of Computer Science

University of Illinois at Urbana-ChampaignUniversity of Illinois at Urbana-Champaign

Joint work with Dan Roth, Joint work with Dan Roth, WenWen--tau Yihtau Yih, and, and
Dav ZimakDav Zimak

Training w/o ConstraintsTesting: Inference with ConstraintsIBT: Inference-based Training

Learning and InferenceLearning and Inference

x1

x6

x2
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x4
x3

x7

y1
y2

y5

y4

y3

f1(x)

f2(x)

f3(x)
f4(x)

f5(x)

X

Y

Learning the
components together!

Which one is better?
When and Why?
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Comparisons of Learning ApproachesComparisons of Learning Approaches

Coupling (IBT)Coupling (IBT)
 Optimize the true Optimize the true globalglobal objective function (this should objective function (this should

be better in the limit)be better in the limit)

Decoupling (L+I)Decoupling (L+I)
 More efficientMore efficient
 Reusability of classifiersReusability of classifiers
 Modularity in trainingModularity in training

–– No No globalglobal examples required examples required
–– Can use appropriate model for each piece of problemCan use appropriate model for each piece of problem

New Ensemble Method: ESNew Ensemble Method: ES
 Train Train manymany different models: different models:

–– different algorithmsdifferent algorithms
–– different parameter settingsdifferent parameter settings
–– all trained on same train setall trained on same train set
–– all trained to all trained to ““naturalnatural”” optimization criterion optimization criterion

 Add Add allall models to library: models to library:
–– no model selectionno model selection
–– no validation setno validation set
–– some models bad, some models good, a few models excellentsome models bad, some models good, a few models excellent
–– yields diverse set of models, some of which are good on almost any metricyields diverse set of models, some of which are good on almost any metric

 Forward stepwise Forward stepwise model selectionmodel selection from library: from library:
–– start with empty ensemblestart with empty ensemble
–– try adding each model one-at-a-time to ensembletry adding each model one-at-a-time to ensemble
–– commit model that maximizes performance on metric on a test setcommit model that maximizes performance on metric on a test set
–– repeat until performance stops getting betterrepeat until performance stops getting better

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

0.8453
0.8726
0.9164
0.8142
0.8453
0.8745
0.9024
0.7034
0.8342

AUC Score on the
1k validation set
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Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

0.8453
0.8726
0.9164
0.8142
0.8453
0.8745
0.9024
0.7034
0.8342

AUC Score on the
1k validation set

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

Model 3 0.9164

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

0.8327
0.8702

0.9284
0.9047
0.8832
0.9126
0.8245
0.9384

AUC Score on the
1k validation set

+  Ensemble  =

0.8453
0.8726

0.8142
0.8453
0.8745
0.9024
0.7034
0.8342

Model 3 0.9164

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 3

Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

0.8327
0.8702

0.9284
0.9047
0.8832
0.9126
0.8245
0.9384

AUC Score on the
1k validation set

+  Ensemble  =

0.9164
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Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 4
Model 5
Model 6
Model 7
Model 8

Model 9
Model 3 0.9164

0.9384

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 4
Model 5
Model 6
Model 7
Model 8

0.8502
0.9243

0.8992
0.8090
0.9424
0.9045
0.9243

AUC Score on the
1k validation set

+  Ensemble  =

Model 9
Model 3 0.9164

0.9384
0.8327
0.8702

0.9284
0.9047
0.8832
0.9126
0.8245

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 4
Model 5
Model 6
Model 7
Model 8

0.8502
0.9243

0.8992
0.8090
0.9424
0.9045
0.9243

AUC Score on the
1k validation set

+  Ensemble  =

Model 9
Model 3 0.9164

0.9384

Basic Ensemble Selection AlgorithmBasic Ensemble Selection Algorithm
Model Library Ensemble

Model 1
Model 2

Model 4
Model 5

Model 6

Model 7
Model 8

Model 9
Model 3 0.9164

0.9384
0.9424
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Big Problem: OverfittingBig Problem: Overfitting
 More models ==> better chance of finding combination with goodMore models ==> better chance of finding combination with good

performance on any given problem and metric,performance on any given problem and metric,
 but but ……
 also better chance of also better chance of overfitting overfitting to the to the hillclimb hillclimb setset

 Tricks to ReduceTricks to Reduce Overfitting Overfitting::
–– Eliminate Inferior Models: prevents mistakesEliminate Inferior Models: prevents mistakes
–– Ensemble Initialization: give Ensemble Initialization: give ““inertiainertia”” to initial ensemble to initial ensemble
–– Stepwise Selection with Replacement: stopping point less criticalStepwise Selection with Replacement: stopping point less critical
–– Calibrate Models in Ensemble: all models speak same languageCalibrate Models in Ensemble: all models speak same language
–– Bagged Ensemble Selection: reduces varianceBagged Ensemble Selection: reduces variance

 Critical to take steps to reduce Critical to take steps to reduce overfittingoverfitting

Best of the Best of the BestBest of the Best of the Best

0.95330.95330.9890.9890.9440.9440.9190.9190.9580.9580.9580.9580.9870.9870.9750.9750.9180.9180.9280.928BESTBEST

0.8010.8010.6780.6780.7830.7830.7400.7400.8540.8540.8710.8710.9260.9260.8980.8980.7600.7600.6980.698BST-STMPBST-STMP

0.8920.8920.8260.8260.8780.8780.8720.8720.9290.9290.9260.9260.9630.9630.9470.9470.8750.8750.8170.817ANNANN

0.8970.8970.7020.7020.8980.8980.8920.8920.9480.9480.9570.9570.9770.9770.9580.9580.8710.8710.8660.866RND-FORRND-FOR

0.6110.6110.1610.1610.5650.5650.5390.5390.7300.7300.7330.7330.8330.8330.7860.7860.6150.6150.5360.536NANAÏÏVE-BVE-B

0.6960.6960.6780.6780.6200.6200.6140.6140.7140.7140.7320.7320.8490.8490.8290.8290.6230.6230.6020.602LOG-REGLOG-REG

0.9140.9140.8080.8080.9320.9320.9290.9290.9520.9520.9580.9580.9770.9770.9560.9560.8540.8540.8600.860BST-DTBST-DT

0.8780.8780.6370.6370.9010.9010.8750.8750.9280.9280.9500.9500.9720.9720.9530.9530.8490.8490.8360.836 BAG-DT BAG-DT

0.7340.7340.6880.6880.6250.6250.5860.5860.8080.8080.7890.7890.8710.8710.8560.8560.7710.7710.6110.611DTDT

0.8350.8350.7060.7060.8050.8050.7860.7860.8980.8980.8930.8930.9370.9370.9140.9140.8200.8200.7590.759 KNN KNN

0.8840.8840.7690.7690.8800.8800.8820.8820.9290.9290.9310.9310.9610.9610.9280.9280.8510.8510.8230.823SVMSVM

MeanMeanCalibratioCalibratio
nn

Cross-Cross-
EntropyEntropy

SquaredSquared
ErrorError

BreakBreak
Even PointEven Point

AverageAverage
PrecisionPrecisionROC AreaROC AreaLiftLiftF-ScoreF-ScoreAccuracyAccuracyModelModel

Probability MetricsProbability MetricsRank/Ordering MetricsRank/Ordering MetricsThreshold MetricsThreshold Metrics

Normalized Scores for ESNormalized Scores for ES

0.97770.97770.98770.98770.98080.98080.97950.97950.97860.97860.98460.98460.99650.99650.99160.99160.94420.94420.95600.9560ESES

0.95660.95660.98710.98710.95850.95850.95040.95040.95570.95570.97730.97730.98510.98510.97850.97850.89060.89060.92580.9258BAYESAVBAYESAV
GG

0.95330.95330.98910.98910.94430.94430.91940.91940.95810.95810.95880.95880.98760.98760.97540.97540.91880.91880.92830.9283BESTBEST

0.90670.90670.98560.98560.80860.80860.82710.82710.96060.96060.97210.97210.98780.98780.98150.98150.80070.80070.83630.8363AVG_ALLAVG_ALL

0.49820.49820.82210.8221-0.9897-0.98970.33170.33170.84690.84690.78600.78600.79920.79920.83520.83520.77720.77720.27530.2753STACK_LRSTACK_LR

0.8010.8010.6780.6780.7830.7830.7400.7400.8540.8540.8710.8710.9260.9260.8980.8980.7600.7600.6980.698BST-STMPBST-STMP

0.8920.8920.8260.8260.8780.8780.8720.8720.9290.9290.9260.9260.9630.9630.9470.9470.8750.8750.8170.817ANNANN

0.8970.8970.7020.7020.8980.8980.8920.8920.9480.9480.9570.9570.9770.9770.9580.9580.8710.8710.8660.866RND-FORRND-FOR

0.9140.9140.8080.8080.9320.9320.9290.9290.9520.9520.9580.9580.9770.9770.9560.9560.8540.8540.8600.860BST-DTBST-DT

0.8780.8780.6370.6370.9010.9010.8750.8750.9280.9280.9500.9500.9720.9720.9530.9530.8490.8490.8360.836 BAG-DT BAG-DT

0.8350.8350.7060.7060.8050.8050.7860.7860.8980.8980.8930.8930.9370.9370.9140.9140.8200.8200.7590.759 KNN KNN

0.8840.8840.7690.7690.8800.8800.8820.8820.9290.9290.9310.9310.9610.9610.9280.9280.8510.8510.8230.823SVMSVM

MeanMeanCalibratioCalibratio
nn

Cross-Cross-
EntropyEntropy

SquaredSquared
ErrorError

BreakBreak
Even PointEven Point

AverageAverage
PrecisionPrecisionROC AreaROC AreaLiftLiftF-ScoreF-ScoreAccuracyAccuracyModelModel

Probability MetricsProbability MetricsRank/Ordering MetricsRank/Ordering MetricsThreshold MetricsThreshold Metrics

Ensemble Selection vs Best: 3 NLP ProblemsEnsemble Selection vs Best: 3 NLP Problems

[Art Munson, Claire Cardie, Rich Caruana. EMNLOP/HLDT 2005]
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Ensemble SelectionEnsemble Selection

 Good news:Good news:
–– A carefully selected ensemble that combines manyA carefully selected ensemble that combines many

models outperforms boosting, bagging, randommodels outperforms boosting, bagging, random
forests, forests, SVMsSVMs, and neural nets, , and neural nets, …… (because it builds (because it builds
on top of them)on top of them)

 Bad news:Bad news:
–– The ensembles are too big,  too slow,  too cumbersomeThe ensembles are too big,  too slow,  too cumbersome

to use for most applicationsto use for most applications

Best Ensembles are Big and Ugly!Best Ensembles are Big and Ugly!
 Best ensemble for one problem/metric has 422 models:Best ensemble for one problem/metric has 422 models:

–– 72 boosted trees (28,642 individual decision trees!)72 boosted trees (28,642 individual decision trees!)
–– 1 random forest (1024 decision trees)1 random forest (1024 decision trees)
–– 5 bagged trees (100 decision trees in each model)5 bagged trees (100 decision trees in each model)
–– 44 neural nets (2,200 hidden units,total,  >100,000 weights)44 neural nets (2,200 hidden units,total,  >100,000 weights)
–– 115 115 knn knn models (both large and expensive!)models (both large and expensive!)
–– 38 38 SVMs SVMs (100(100’’s of support vectors in each model)s of support vectors in each model)
–– 26 boosted stump models (36,184 stumps total -- could26 boosted stump models (36,184 stumps total -- could

compress)compress)
–– 122 individual decision trees122 individual decision trees
–– ……

 Best ensemble:Best ensemble:
–– takes ~1GB to store modeltakes ~1GB to store model
–– takes ~2 seconds to execute per test case!takes ~2 seconds to execute per test case!

Solution: Model CompressionSolution: Model Compression

 Pass large amounts of unlabeled data (synthetic dataPass large amounts of unlabeled data (synthetic data
points or real unlabeled data) through ensemble andpoints or real unlabeled data) through ensemble and
collect predictionscollect predictions
–– 100,000 to 10,000,000 synthetic training points100,000 to 10,000,000 synthetic training points
–– Extensional representation of the ensemble modelExtensional representation of the ensemble model

 Train Train copycatcopycat model on this large synthetic train set model on this large synthetic train set
to mimic the high-performance ensembleto mimic the high-performance ensemble
–– Train neural net to mimic ensembleTrain neural net to mimic ensemble
–– Potential to not only perform as well as target ensemble,Potential to not only perform as well as target ensemble,

but possibly outperform itbut possibly outperform it

Model CompressionModel Compression



20

Model CompressionModel Compression Generating Synthetic Data: MungingGenerating Synthetic Data: Munging

Generating Synthetic Data: MungingGenerating Synthetic Data: Munging Generating Synthetic Data: MungingGenerating Synthetic Data: Munging
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Summary of Compression ResultsSummary of Compression Results

 Neural nets trained to mimic highNeural nets trained to mimic high
performing ensemble selection modelsperforming ensemble selection models
–– on average, captures more than 97%on average, captures more than 97%

performance of target modelperformance of target model
–– perform much better than any ANN we couldperform much better than any ANN we could

train on original datatrain on original data
–– 1000 times faster than ensemble1000 times faster than ensemble
–– 1000 times smaller than ensemble1000 times smaller than ensemble

Why Mimic with Neural Nets?Why Mimic with Neural Nets?

 Decision trees do not work wellDecision trees do not work well
–– synthetic data must be very large because of recursive partitioningsynthetic data must be very large because of recursive partitioning
–– mimic decision trees are enormous (depth > 1000 and > 10mimic decision trees are enormous (depth > 1000 and > 1066 nodes) nodes)

making them expensive to store and computemaking them expensive to store and compute
–– single tree does not seem to model ensemble accurately enoughsingle tree does not seem to model ensemble accurately enough

 SVMsSVMs
–– number of support vectors increases quickly with complexitynumber of support vectors increases quickly with complexity

 Artificial Neural netsArtificial Neural nets
–– can model complex functions with modest # of  hidden unitscan model complex functions with modest # of  hidden units
–– can compress millions of training cases into thousands of weightscan compress millions of training cases into thousands of weights
–– expense to train, expense to train,   but execution cost is low (just matrix multiplies)but execution cost is low (just matrix multiplies)
–– models with few thousand weights have small footprintmodels with few thousand weights have small footprint

Thank You.

Questions?

Thank You.

Questions?


