# Lower Bounds for Reductions 

Matti Kääriäinen<br>(joint work with John Langford)

Talk at the Atomic Learning workshop, TTI Chicago
March 25, 2006.

## Outline

- Goals
- Case studies:
- A lower bound for reducing structural sequence learning to binary classification
- A lower bound for reducing probability prediction to binary classification
- Back to general concerns


## Why lower bounds for reductions?

Utilitarian:

- Prove optimality of existing reductions
- Highlight difficult cases (so that they can be circumvented)
- Compare different reduction strategies
- Compare difficulty of different learning tasks

Other:

- Gain understanding on upper bounds
- Study inherent limitations of the reductions approach


## Case study I: A sequence prediction problem

## Basic setup:

- Given $\vec{X}=\left(X_{1}, \ldots, X_{T}\right)$, predict $\vec{Y}=\left(Y_{1}, \ldots, Y_{T}\right) \in\{0,1\}^{T}$
- $(\vec{X}, \vec{Y}) \sim D$ iid from some distribution
- Loss of classifier $\vec{f}=\left(f_{1}, \ldots, f_{T}\right)$ measured by expected Hamming distance

$$
\operatorname{Ham}(\vec{f})=\mathbb{E}_{(\vec{X}, \vec{Y}) \sim D}\left[\sum_{i=1}^{T} I_{\left\{Y_{i} \neq \hat{Y}_{i}\right\}}\right],
$$

where $\hat{Y}_{i}=f_{i}(\vec{X})$.
To make the task (at least look) easier, we assume more structure (on $D$ and $\vec{f}$ ).

## Comb structure

To facilitate learning, the learner assumes that $D$ has the following comb structure:


## Reduction to binary prediction

Reduction to $T$ binary tasks can be done in many ways, e.g.

- $f_{i}: \prod_{j=1}^{T} \mathcal{X}_{i} \rightarrow\{0,1\}$
- $f_{i}:\{0,1\} \times \mathcal{X}_{i} \times\{0,1\} \rightarrow\{0,1\}$
- $f_{i}:\{0,1\} \times \mathcal{X}_{i} \rightarrow\{0,1\}$
- $f_{i}: \mathcal{X}_{i} \times\{0,1\} \rightarrow\{0,1\}$

We choose $f_{i}:\{0,1\} \times \mathcal{X}_{i} \rightarrow\{0,1\}$ for now. As a picture:


## Protocol for learning

Learner:

1. Obtain set of training examples $\left\{\left(\vec{X}^{j}, \vec{Y}^{j}\right) \mid j=1, \ldots, n\right\}$ sampled from $D$
2. Learn:

- $\hat{f}_{1}: \mathcal{X}_{1} \rightarrow\{0,1\}$
- $\hat{f}_{i+1}:\{0,1\} \times \mathcal{X}_{i+1} \rightarrow\{0,1\}$

3. Given a test example $\vec{X}=\left(X_{1}, \ldots, X_{T}\right)$, predict

- $\hat{Y}_{1}=\hat{f}_{1}\left(X_{1}\right)$
- $\hat{Y}_{i+1}=\hat{f}_{i+1}\left(\hat{Y}_{i}, X_{i+1}\right)$

Ultimate goal: Minimize $\operatorname{Ham}(\vec{f})$.

## Measuring error of components of $\vec{f}$

- The two natural ways to measure error of $\hat{f}_{i+1}$ :

1. $P_{(\vec{X}, \vec{Y}) \sim D}\left[\hat{f}_{i+1}\left(Y_{i}, X_{i+1}\right) \neq Y_{i+1}\right]$
2. $P_{(\vec{X}, \vec{Y}) \sim D}\left[\hat{f}_{i+1}\left(\hat{Y}_{i}, X_{i+1}\right) \neq Y_{i+1}\right]$

## These are very very different!

We choose number 1 , end denote it by $\varepsilon\left(\hat{f}_{i+1}\right)$.

- For technical reasons, we assume in the analysis that

$$
P_{(\vec{X}, \vec{Y}) \sim D}\left[\hat{f}_{i+1}\left(Y_{i}, X_{i+1}\right) \neq Y_{i+1} \mid Y_{i}=0 / 1\right]=\varepsilon\left(\hat{f}_{i+1}\right)
$$

## Result 1

Theorem: There exists a problem $D$ with the comb structure such that even if $\varepsilon\left(\hat{f}_{i}\right)=\epsilon$ for all $i$, we have

$$
\operatorname{Ham}(\vec{f})=\frac{T}{2}-\frac{1-(1-2 \epsilon)^{T+1}}{4 \epsilon}+\frac{1}{2} \approx \frac{T}{2}
$$

Proof idea: Let $Y_{1}=f\left(X_{1}\right)$ for some $f$, let $Y_{i+1}=Y_{i}$, and let the $X_{i}$, $i>1$, be independent from everything.

Show that the stochastic process $Z_{i}=I_{\left\{Y_{i} \neq \hat{Y}_{i}\right\}}$ is a 2-state Markov chain with transition matrix

$$
A=\left[\begin{array}{cc}
1-\epsilon & \epsilon \\
\epsilon & 1-\epsilon
\end{array}\right]
$$

Rest follows by known properties of this Markov chain and algebra.

## Comments

Result shows that:

- Errors can sometimes accumulate fast

But:

- Very uninteresting problem
- Easy to solve by using the decomposition $f_{i}: \prod_{j=1}^{T} \mathcal{X}_{i} \rightarrow\{0,1\}$
- Hard to believe that $\varepsilon\left(\hat{f}_{i}\right)=\epsilon$ for $i>1$

To make making errors more believable, introduce more dependencies...

## Another comb structure

Suppose the dependencies are covered by:


## Result 2

Theorem: There exists a problem $D$ with the extended comb structure such that if $\varepsilon\left(\hat{f}_{i+1}\right)=\epsilon$ for all $i$, then

$$
\operatorname{Ham}(\vec{f})=\frac{T}{2}-\frac{1-(1-2 \epsilon)^{T+1}}{4 \epsilon}+\frac{1}{2} \approx \frac{T}{2} .
$$

Proof idea: One can construct a $D$ such that

- $D$ has the extended comb structure
- Learning the $\hat{f}_{i} \mathrm{~s}$ is non-trivial
- The process $Z_{i}=I_{\left\{Y_{i} \neq \hat{Y}_{i}\right\}}$ is still the same 2-state Markov chain as before.


## The difficult task $D$

Abstract version of the following parity problem:

- $X_{i} \mathbf{s}$ independently sampled raster images of zeros and ones (possibly, say, different fonts for different $i$ s)
- $Y_{i}$ parity of digits represented by $X_{1}, \ldots, X_{i}$

More formally:

- $\tilde{f}_{i}\left(X_{i}\right)$ the digit represented by image $X_{i}$
- $Y_{i}=\bigotimes_{j=1}^{i} \tilde{f}_{j}\left(X_{j}\right)=Y_{i-1} \otimes \tilde{f}_{i}\left(X_{i}\right)$

One can furthermore assume that
$P_{(\vec{X}, \vec{Y}) \sim D}\left[Y_{i}=0\right]=P_{(\vec{X}, \vec{Y}) \sim D}\left[Y_{i}=1\right]=0.5$.

## Better solutions?

- The theorems show that the decomposition $f_{i}:\{0,1\} \times \mathcal{X}_{i} \rightarrow\{0,1\}$ does not work
- Is the decomposition $f_{i}: \prod_{j=1}^{T} \mathcal{X}_{j} \rightarrow\{0,1\}$ any better?
- Shouldn't be, as $Y_{i+1}$ really depends only on $Y_{i}$ and $X_{i+1}$.
- Similar reasoning applies to other decompositions.

Conclusion: The task is difficult.

## Easy parity problem

- Idea: Replace $X_{1}$ by the vector $\left(X_{1},\left(Y_{1}, \ldots, Y_{T}\right)\right)$
- Effects:
- Breaks comb structure
- Learning using the decomposition $f_{i}:\{0,1\} \times \mathcal{X}_{i} \rightarrow\{0,1\}$ still hard
- Learning using the decomposition $f_{i}: \prod_{j=1}^{T} \mathcal{X}_{j} \rightarrow\{0,1\}$ very easy
- Thus, using the decomposition $f_{i}:\{0,1\} \times \mathcal{X}_{i} \rightarrow\{0,1\}$ can be a bad idea if assumption on comb structure wrong


## So which way to decompose?

Answer depends on $D$, any one of

- $f_{i}: \prod_{j=1}^{T} \mathcal{X}_{i} \rightarrow\{0,1\}$
- $f_{i}:\{0,1\} \times \mathcal{X}_{i} \times\{0,1\} \rightarrow\{0,1\}$
- $f_{i}:\{0,1\} \times \mathcal{X}_{i} \rightarrow\{0,1\}$
- $f_{i}: \mathcal{X}_{i} \times\{0,1\} \rightarrow\{0,1\}$
can be superior (or very very bad).


## Lessons learned?

Possible conclusion:

- The simplifying comb assumption doesn't make things simple maybe it is the wrong assumption?
- The comb assumption is an upper bound on dependencies in $D$, but reality needs not be worst-case - should one add an assumption that there are no strong long distance dependencies?
- Some completely different assumptions that better capture "locality"?


## End of sequence prediction

## Case study II: Lower bound for reducing probability prediction to binary classification

Task: Learn a probability predictor $p: \mathcal{X} \rightarrow[0,1]$ with small mean squared error

$$
\mathbb{E}_{(X, Y) \sim D}\left[(D(1 \mid X)-p(X))^{2}\right]=\mathbb{E}_{X \sim D_{X}}\left[(D(1 \mid X)-p(X))^{2}\right]
$$

Here, $D$ is a distribution on $\mathcal{X} \times\{0,1\}$ generating the training data.
Question: Informally, if we assume the capability to solve binary classification to some accuracy, how well can we hope to solve probability prediction?

## The reduction approach

- General strategy:

1. Map the probability prediction problem $D$ into a binary prediction problem $\tilde{D}$ with some domain $\tilde{X}$
2. Learn a binary predictor $c: \tilde{\mathcal{X}} \rightarrow\{0,1\}$ with small generalization error $\operatorname{Pr}_{(x, y) \sim \tilde{D}}[c(x) \neq y]$
3. Construct $p$ from $c$

- The probing reduction: Instance of the above, transforms

$$
\operatorname{Pr}_{(x, y) \sim \tilde{D}}[c(x) \neq y]=\epsilon
$$

to

$$
\mathbb{E}_{(X, Y) \sim D}\left[(D(1 \mid X)-p(X))^{2}\right]=2 \epsilon
$$

- Is probing optimal?


## List of assumptions

A1: For $x, x^{\prime} \in \mathcal{X}, x \neq x^{\prime}$, we have $\tilde{\mathcal{X}}_{x} \cap \tilde{\mathcal{X}}_{x^{\prime}}=\emptyset$, where $\mathcal{X}_{x}$ is the subset of $\tilde{\mathcal{X}}$ that contains all points $\tilde{x}$ that may affect $p(x)$.

A2: For each $x \in \mathcal{X}$, there is a way to choose the predictions for $c$ in the set $\mathcal{X}_{x}$ so that $|p(x)-D(1 \mid x)| \geq \alpha$, where $\alpha$ is a constant, say $\alpha=0.5$.

A3: The set $\mathcal{X}$ can be partitioned into disjoint pieces of probability $\epsilon$ each.

A4: There exists a classifier $c$ whose generalization error on $\tilde{D}$ is zero.

## Result

Theorem: Suppose

- The transformation from $c$ to $p$ satisfies A1\&A2
- D satisfies A3
- $\tilde{D}$ satisfies A4

Then there exists a $c$ with generalization error $\epsilon$ that transforms to $p$ with mean squared error at least $\alpha^{2} \epsilon$.

## Justification of assumptions

A1: Without some control on how $p$ depends on $c$, one can make $c$ be an error correcting encoding of a good $p \Rightarrow$ no lower bounds possible

A2: If $p$ does not depend on $c$, then $p$ can be arbitrarily good independently of $c \Rightarrow$ no lower bounds possible

A3\&A4: Probably not that serious, and can be relaxed.
Thus, the assumptions cannot be dropped altogether, but they may be unnecessarily strict.

## Lessons learned?

The lower bound may be useful in the following ways:

- Shows that probing is close to optimal in the class of reductions satisfying the assumptions $\Rightarrow$ fair to market probing as "optimal"
- Improvements upon probing have to violate some of the assumptions $\Rightarrow$ lower bound narrows down the search space for potentially better reductions
- Shows why probing cannot be easily improved:
- With binary error rate $\epsilon$, up to an $\epsilon$-fraction of the input space for probability prediction may remain totally unknown


## End of probability prediction

Back to generalities on reductions and what can be done with them.

## Constructive reductions (upper bounds)

- Given:
- Problem classes $A$ and $B$
- A method $M$ for solving instances of $B$
- Reduction: a (not too complex) mapping $f: A \rightarrow B$ s.t.
- A solution to $f(a) \in B$ can be (sufficiently easily) transformed to a solution to $a \in A$.
- If a reduction $f$ from $A$ to $B$ exists, then $A$ can be solved by combining $f$ and $M$.


## Destructive reductions (lower bounds)

- Given:
- Problem classes $A$ and $B$
- Task $A$ known to be hard
- Reductions: Mappings $f: A \rightarrow B$ with same properties as before.
- If a reduction from $A$ to $B$ exists, then also $B$ is hard (i.e., $B$ has hard instances).


## Reductions in learning

Constructive:

- Statements of the form
- If $f(a) \in B$ can be solved (to some accuracy), then $a \in A$ can be solved (to some related accuracy)
- Unrealistic to assume that all instances of $B$ are sufficiently easy
- How to characterize or analyze the difficulty of $f(a)$ ?


## Destructive:

- Perhaps not that meaningful, as all tasks $B$ are known to have hard instances anyway (?)

Instead of lower bounds by reductions, we look for lower bounds for reductions.

## Lower bounds for learning reductions in general

Assume:

- A "black box" method for solving instances of $B$
- Something on the properties/structure of $f$
- Something on the reconstruction strategy that transforms solutions to $f(a) \in B$ to solutions to $a \in A$.

Prove:

- There is a limit to the accuracy to which $a \in A$ can be solved, given that
- The reduction/reconstruction strategy satisfies the assumptions
- The accuracy in solving $f(a) \in B$ is independent of $f$


## Additional details to consider

- How to measure accuracy (on $A$ and $B$ )? Possibilities:
- Training set error
- Mistake bounds
- Test set error
- Something else?
- Often, reductions are mappings $f: A \rightarrow B^{k}$ for some large $k$.
- How to measure the joint performance of solutions to $f_{1}(a), \ldots, f_{k}(a) ?$


## Inherent limitations

- Without extra assumptions, any statement of the form
- If $f(a) \in B$ can be solved (to some accuracy), then $a \in A$ can be solved (to some related accuracy)
can be made true by ensuring $f(a) \in B$ cannot be solved/is hard enough to solve.
- Thus, one can argue that
- Lower bounds are impossible
- Upper bounds are meaningless
- To ensure that reductions makes sense, one needs
- Deeper insight to the difficulty of $f(a) \in B$
- Extra assumptions and/or extra care


## Future work

- Main open problem:
- What makes a reduction natural?

