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Outline

• Goals

• Case studies:

− A lower bound for reducing structural sequence learning to
binary classification

− A lower bound for reducing probability prediction to binary
classification

• Back to general concerns
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Why lower bounds for reductions?

Utilitarian:

• Prove optimality of existing reductions

• Highlight difficult cases (so that they can be circumvented)

• Compare different reduction strategies

• Compare difficulty of different learning tasks

Other:

• Gain understanding on upper bounds

• Study inherent limitations of the reductions approach
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Case study I: A sequence prediction problem

Basic setup:

• Given ~X = (X1, . . . , XT ), predict ~Y = (Y1, . . . , YT ) ∈ {0, 1}T

• ( ~X, ~Y ) ∼ D iid from some distribution

• Loss of classifier ~f = (f1, . . . , fT ) measured by expected
Hamming distance

Ham(~f) = E( ~X,~Y )∼D

[

T
∑

i=1

I{Yi 6=Ŷi}

]

,

where Ŷi = fi( ~X).

To make the task (at least look) easier, we assume more structure
(on D and ~f ).
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Comb structure

To facilitate learning, the learner assumes that D has the following
comb structure:

X1 X3 XT−1 XTX2

Y1 Y2 Y3 YT−1 YT
~Y :

~X :
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Reduction to binary prediction

Reduction to T binary tasks can be done in many ways, e.g.

• fi :
∏T

j=1 Xi → {0, 1}

• fi : {0, 1} × Xi × {0, 1} → {0, 1}

• fi : {0, 1} × Xi → {0, 1}

• fi : Xi × {0, 1} → {0, 1}

We choose fi : {0, 1} × Xi → {0, 1} for now. As a picture:

X1

Y1

Xi+1

Yi Yi+1

f1 : fi+1:
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Protocol for learning

Learner:

1. Obtain set of training examples {( ~Xj , ~Y j) | j = 1, . . . , n}

sampled from D

2. Learn:

• f̂1 : X1 → {0, 1}

• f̂i+1 : {0, 1} × Xi+1 → {0, 1}

3. Given a test example ~X = (X1, . . . , XT ), predict

• Ŷ1 = f̂1(X1)

• Ŷi+1 = f̂i+1(Ŷi, Xi+1)

Ultimate goal: Minimize Ham( ~f).
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Measuring error of components of ~f

• The two natural ways to measure error of f̂i+1:

1. P( ~X,~Y )∼D
[f̂i+1(Yi, Xi+1) 6= Yi+1]

2. P( ~X,~Y )∼D
[f̂i+1(Ŷi, Xi+1) 6= Yi+1]

These are very very different!

We choose number 1, end denote it by ε(f̂i+1).

• For technical reasons, we assume in the analysis that

P( ~X,~Y )∼D
[f̂i+1(Yi, Xi+1) 6= Yi+1 | Yi = 0/1] = ε(f̂i+1)
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Result 1

Theorem: There exists a problem D with the comb structure such
that even if ε(f̂i) = ε for all i, we have

Ham(~f) =
T

2
−

1 − (1 − 2ε)T+1

4ε
+

1

2
≈

T

2
.

Proof idea: Let Y1 = f(X1) for some f , let Yi+1 = Yi, and let the Xi,
i > 1, be independent from everything.

Show that the stochastic process Zi = I{Yi 6=Ŷi}
is a 2-state Markov

chain with transition matrix

A =





1 − ε ε

ε 1 − ε



 .

Rest follows by known properties of this Markov chain and algebra.
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Comments

Result shows that:

• Errors can sometimes accumulate fast

But:

• Very uninteresting problem

• Easy to solve by using the decomposition fi :
∏T

j=1 Xi → {0, 1}

• Hard to believe that ε(f̂i) = ε for i > 1

To make making errors more believable, introduce more
dependencies. . .
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Another comb structure

Suppose the dependencies are covered by:

X1 X3 XT−1 XTX2

Y1 Y2 Y3 YT−1 YT
~Y :

~X :
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Result 2

Theorem: There exists a problem D with the extended comb
structure such that if ε(f̂i+1) = ε for all i, then

Ham(~f) =
T

2
−

1 − (1 − 2ε)T+1

4ε
+

1

2
≈

T

2
.

Proof idea: One can construct a D such that

• D has the extended comb structure

• Learning the f̂is is non-trivial

• The process Zi = I{Yi 6=Ŷi}
is still the same 2-state Markov chain

as before.
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The difficult task D

Abstract version of the following parity problem:

• Xis independently sampled raster images of zeros and ones
(possibly, say, different fonts for different is)

• Yi parity of digits represented by X1, . . . , Xi

More formally:

• f̃i(Xi) the digit represented by image Xi

• Yi =
⊗i

j=1 f̃j(Xj) = Yi−1 ⊗ f̃i(Xi)

One can furthermore assume that
P( ~X,~Y )∼D

[Yi = 0] = P( ~X,~Y )∼D
[Yi = 1] = 0.5.
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Better solutions?

• The theorems show that the decomposition
fi : {0, 1} × Xi → {0, 1} does not work

• Is the decomposition fi :
∏T

j=1 Xj → {0, 1} any better?

− Shouldn’t be, as Yi+1 really depends only on Yi and Xi+1.

• Similar reasoning applies to other decompositions.

Conclusion: The task is difficult.
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Easy parity problem

• Idea: Replace X1 by the vector (X1, (Y1, . . . , YT ))

• Effects:

− Breaks comb structure

− Learning using the decomposition fi : {0, 1} × Xi → {0, 1} still
hard

− Learning using the decomposition fi :
∏T

j=1 Xj → {0, 1} very
easy

• Thus, using the decomposition fi : {0, 1} × Xi → {0, 1} can be a
bad idea if assumption on comb structure wrong
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So which way to decompose?

Answer depends on D, any one of

• fi :
∏T

j=1 Xi → {0, 1}

• fi : {0, 1} × Xi × {0, 1} → {0, 1}

• fi : {0, 1} × Xi → {0, 1}

• fi : Xi × {0, 1} → {0, 1}

can be superior (or very very bad).
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Lessons learned?

Possible conclusion:

• The simplifying comb assumption doesn’t make things simple —
maybe it is the wrong assumption?

• The comb assumption is an upper bound on dependencies in D,
but reality needs not be worst-case — should one add an
assumption that there are no strong long distance
dependencies?

• Some completely different assumptions that better capture
“locality”?
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End of sequence prediction
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Case study II: Lower bound for reducing

probability prediction to binary classification

Task: Learn a probability predictor p : X → [0, 1] with small mean
squared error

E(X,Y )∼D[(D(1|X) − p(X))2] = EX∼DX
[(D(1|X) − p(X))2]

Here, D is a distribution on X × {0, 1} generating the training data.

Question: Informally, if we assume the capability to solve binary
classification to some accuracy, how well can we hope to solve
probability prediction?
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The reduction approach

• General strategy:

1. Map the probability prediction problem D into a binary
prediction problem D̃ with some domain X̃

2. Learn a binary predictor c : X̃ → {0, 1} with small
generalization error Pr(x,y)∼D̃[c(x) 6= y]

3. Construct p from c

• The probing reduction: Instance of the above, transforms

Pr(x,y)∼D̃[c(x) 6= y] = ε

to
E(X,Y )∼D[(D(1|X) − p(X))2] = 2ε.

• Is probing optimal?
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List of assumptions

A1: For x, x′ ∈ X , x 6= x′, we have X̃x ∩ X̃x′ = ∅, where Xx is the
subset of X̃ that contains all points x̃ that may affect p(x).

A2: For each x ∈ X , there is a way to choose the predictions for c in
the set Xx so that |p(x)−D(1|x)| ≥ α, where α is a constant, say
α = 0.5.

A3: The set X can be partitioned into disjoint pieces of probability ε

each.

A4: There exists a classifier c whose generalization error on D̃ is
zero.
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Result

Theorem: Suppose

• The transformation from c to p satisfies A1&A2

• D satisfies A3

• D̃ satisfies A4

Then there exists a c with generalization error ε that transforms to p

with mean squared error at least α2ε.
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Justification of assumptions

A1: Without some control on how p depends on c, one can make c

be an error correcting encoding of a good p ⇒ no lower bounds
possible

A2: If p does not depend on c, then p can be arbitrarily good
independently of c ⇒ no lower bounds possible

A3&A4: Probably not that serious, and can be relaxed.

Thus, the assumptions cannot be dropped altogether, but they may
be unnecessarily strict.
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Lessons learned?

The lower bound may be useful in the following ways:

• Shows that probing is close to optimal in the class of reductions
satisfying the assumptions ⇒ fair to market probing as “optimal”

• Improvements upon probing have to violate some of the
assumptions ⇒ lower bound narrows down the search space for
potentially better reductions

• Shows why probing cannot be easily improved:

− With binary error rate ε, up to an ε-fraction of the input space
for probability prediction may remain totally unknown
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End of probability prediction

Back to generalities on reductions and what can be done with them.
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Constructive reductions (upper bounds)

• Given:

− Problem classes A and B

− A method M for solving instances of B

• Reduction: a (not too complex) mapping f : A → B s.t.

− A solution to f(a) ∈ B can be (sufficiently easily) transformed
to a solution to a ∈ A.

• If a reduction f from A to B exists, then A can be solved by
combining f and M .
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Destructive reductions (lower bounds)

• Given:

− Problem classes A and B

− Task A known to be hard

• Reductions: Mappings f : A → B with same properties as
before.

• If a reduction from A to B exists, then also B is hard (i.e., B has
hard instances).
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Reductions in learning

Constructive:

• Statements of the form

− If f(a) ∈ B can be solved (to some accuracy), then a ∈ A can
be solved (to some related accuracy)

• Unrealistic to assume that all instances of B are sufficiently easy

• How to characterize or analyze the difficulty of f(a)?

Destructive:

• Perhaps not that meaningful, as all tasks B are known to have
hard instances anyway (?)

Instead of lower bounds by reductions, we look for lower bounds for
reductions.

28



Lower bounds for learning reductions in general

Assume:

• A “black box” method for solving instances of B

• Something on the properties/structure of f

• Something on the reconstruction strategy that transforms
solutions to f(a) ∈ B to solutions to a ∈ A.

Prove:

• There is a limit to the accuracy to which a ∈ A can be solved,
given that

− The reduction/reconstruction strategy satisfies the
assumptions

− The accuracy in solving f(a) ∈ B is independent of f
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Additional details to consider

• How to measure accuracy (on A and B)? Possibilities:

− Training set error

− Mistake bounds

− Test set error

− Something else?

• Often, reductions are mappings f : A → Bk for some large k.

− How to measure the joint performance of solutions to
f1(a), . . . , fk(a)?
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Inherent limitations

• Without extra assumptions, any statement of the form

− If f(a) ∈ B can be solved (to some accuracy), then a ∈ A can
be solved (to some related accuracy)

can be made true by ensuring f(a) ∈ B cannot be solved/is hard
enough to solve.

• Thus, one can argue that

− Lower bounds are impossible

− Upper bounds are meaningless

• To ensure that reductions makes sense, one needs

− Deeper insight to the difficulty of f(a) ∈ B

− Extra assumptions and/or extra care
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Future work

• Main open problem:

− What makes a reduction natural?
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