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Why
Stochastic 
Gradient?
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The flood of information caused by
plentiful, affordable sensors (such as webcams)
ever-increasing networking of these sensors

overwhelms our processing ability in, e.g.,
science   - pulsar survey at  Arecibo: 1 TB/day
business - Dell website: over 100 page requests/sec
security  - London: over 500’000 security cameras

We need intelligent, adaptive filters to cope!

3The Information Glut
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Coping with the info glut requires algorithms for
large adaptive models
millions of degrees of freedom
large volumes of low-quality data
noisy, correlated, non-stationary, outliers
efficient real-time, online adaptation
no fixed training set, life-long learning

Current optimization techniques are inadequate.

4The Challenge for ML
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5Online Learning Paradigm

classical optimization:

iterative optimizer

objective fn.

training
data set

nested loops!

online learning:

online optimizer

training
data stream

...

(aka adaptive filtering,
 stochastic approximation, ...)
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Classical formulation of optimization problem:

inefficient for large data sets X
inappropriate for never-ending,
potentially non-stationary data streams

⇒ must resort to stochastic approximation:

6Stochastic Approximation

θt+1 ≈ arg min
θ

J(θt,xt) (t = 0, 1, 2, . . .)

θ
∗ = arg min

θ
: Ex[J(θ,x)] ≈

1

|X|

∑

xi∈X

J(θ,xi)
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Stochastic Objective 7
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accelerate  convergence
Kalman Filter 

The Key Problem 8

cost per iteration
O(1) O(n) O(n  )2 O(n  )3 
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evolutionary algorithms 

gradient descent 

conjugate gradient 

quasi-Newton 

Levenberg
Marquardt 

optimization algorithms:
online, scalable
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The Key Problem

Stochastic approximation breaks many optimizers:
conjugate directions break down due to noise
line minimizations (CG, quasi-Newton) inaccurate
Newton, Levenberg-Marquardt, Kalman filter -
too expensive for large-scale problems

This only leaves
evolutionary alg.s - very inefficient (don’t use gradient)
simple gradient descent - can be slow to converge

9
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Stochastic 
Meta-Descent

(SMD)

10
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11Gain Vector Adaptation

Given stochastic gradient                            ,
adapt θ          by gradient descent with gain vectorη:

θt+1 = θt − η
t
· g

t

g
t
:= ∂θJ(θt,xt)

Hadamard
(element-wise)

scalar meta-gain
(free parameter)

η
t
= η

t−1 · exp(−µ ∂θJ(θt,xt) · ∂lnη θt)

≈ η
t−1 · max( 1

2
, 1 − µ g

t
· vt)

Key idea:
simultaneously adapt η by exponentiated gradient:

lnη
t
= lnη

t−1 − µ ∂lnηJ(θt,xt)
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Single-Step Model 12

giving η
t
= η

t−1 · max( 1

2
, 1 + µη

t−1 · gt−1 · gt
)

⇒ adaptation of η driven by autocorrelation of g:

Conventionally,

(recall that                                 )θt+1 = θt − η
t
· g

t

vt+1 := ∂lnη
t
θt+1 = −η

t
· g

t
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SMD’s Multi-Step Model 13

vt+1 :=

t∑

i=0

λ
i

∂θt+1

∂ lnηt−i

define decay 0≤λ≤1
(free parameter)

t0
p(t)

p(t)

w(t)

w(t)

t0

θ
η

θ
η

To capture long-term dependence of θ on η:
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vt+1 :=

t∑

i=0

λ
i

∂θt+1

∂ lnηt−i

vt+1 = λvt −

t∑

i=0

λ
i
∂(ηt · gt)

∂ lnηt−i

vt+1 =
t∑

i=0

λ
i

∂θt

∂ lnηt−i

−

t∑

i=0

λ
i
∂(ηt · gt)

∂ lnηt−i

vt+1 ≈ λvt − ηt ·

(

gt +

t
∑

i=0

λ
i

∂gt

∂ lnηt−i

)

vt+1 = λvt − ηt ·

(

gt +

t
∑

i=0

λ
iHt

∂θt

∂ lnηt−i

)

vt+1 = λvt −

t∑

i=0

λ
i
∂ηt · gt

∂ lnηt−i

−

t∑

i=0

λ
i
ηt · ∂gt

∂ lnηt−i

vt+1 = λvt − η
t
· (g

t
+ λHtvt)

SMD’s v-update 14

we obtain a simple iterative update for v

λ can smoothe over correlated input signals

iteration similar to TD(λ) RL method (Sutton)
generalizes Sutton’s (1992) K1 algorithm
linear to non-linear system, diagonal to full Hessian
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v is too noisy to use directly; SMD achieves stability
by means of the double integration v → η → θ
v⋅g is well-behaved (self-normalizing property)
non-convex fn.s: use Gauss-Newton approximation

Fixpoint of v 15

Fixpoint of vt+1 = λvt − η
t
· (g

t
+ λHtvt)

is a Levenberg-Marquardt style gradient step:

v → −[λH + (1 − λ)diag(η)−1]−1g
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Fast Hv Product

Explicit computation of Hv product would be O(n²).
But: consider differential

can set dθ := v, forward-propagate through g()
as efficient as 2-3 gradient evaluations (typ. O(n))
matched approximations of g and Hv ⇒ robust
can even co-opt complex arithmetic:

16

dg(θ) = H(θ) dθ

g(θ + iεdθ) = g(θ) + O(ε2) + iεdg(θ) (ε ≈ 10−150)
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SMD
Benchmarks

17
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Four Regions Benchmark

Compare simple stochastic gradient (SGD), conventional 
gain vector adaptation (ALAP), stochastic meta-descent 

(SMD), and a global extended Kalman filter (GEKF). 

18

x y
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Benchmark: Convergence 19
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Computational Cost 20

Algorithm storage
weight

 flops 
 update

CPU ms
pattern

SGD 1 6 0.5

SMD 3 18 1.0

ALAP 4 18 1.0

GEKF >90 >1500 40
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Benchmark: CPU Usage 21
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Autocorrelated Data

i.i.d. uniform                  Sobol                   Brownian

22
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Comparison to CG 23

 overfits                  diverges                converges

     Conjugate Gradient                      SMD
deterministic              stochastic                stochastic

     (1000 pts)             (1000 pts/iteration)          (5 pts/iteration)   
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SMD
Applications

24
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Application: Turbulent Flow 25

(PhD thesis of M. Milano, Inst. of Computational Science, ETH Zürich)

linear PCA
(160 p.c.)

neural network
(160 nonlinear p.c.)

original flow
(75’000 d.o.f.)
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Hand Tracking with SMD 26

(PhD thesis of M. Bray, L. van Gool’s
 Computer Vision Lab, ETH Zürich)

Annealed Particle Filter
(114 sec/frame)

Stochastic Meta-Descent
(3 sec/frame)
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Hand Tracking @ NICTA 27

with Desmond Chik (PhD)
and Jochen Trumpf (SEACS)

detailed hand model (26 dof,
~10k vertices, skin blending, ...)
randomly sample few points on
model surface, project to image
compare camera image(s) there,
use resulting stochastic gradient to adjust model
radical: completely marker- and feature-free tracking
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Hand (et al.) Tracking 28
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SMD & Policy Gradient RL

with Jin Yu (PhD) and Doug Aberdeen (SML)
SMD accelerates PG-RL
complex interaction with
temporal task structure
had a poster at NIPS’05 

29

1e+5 1e+6 1e+7 1e+8
Iterations

-60

-50

-40

-30

-20

-10

A
v
e
ra

g
e
  
R

e
w

a
rd

smd
ol
conj
ng

1e+6 1e+7 1e+8

1e-6

1e-7S
M

D
 G

a
in

s



The imagination driving Australia’s ICT future.

Statistical Machine Learning Program                           www.nicta.com.au

SMD for Online SVM

Online SVM aka NORMA (Kivinen, Smola, Williamson 2004):
online kernel method
stochastic gradient in
expansion coefficients

employs scalar gain η
Applied SMD (with Vishy):

v is function in RKHS
<g,v> can be maintained incrementally in O(n)
presented at NIPS’05 workshop, submitted to JMLR

30
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Training CRFs  (CoNLL-2000)

Sha, F. & Pereira, F. (2003). Shallow parsing with conditional random fields. In 
Proceedings of HLT-NAACL, 213–220. Association for Computational Linguistics. 
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Figure 2: Training convergence for various methods
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Figure 3: Test F scores vs. training time

such test is McNemar test on paired observations (Gillick
and Cox, 1989).

With McNemar’s test, we compare the correctness of
the labeling decisions of two models. The null hypothesis
is that the disagreements (correct vs. incorrect) are due to
chance. Table 4 summarizes the results of tests between
the models for which we had labeling decisions. These
tests suggest that MEMMs are significantly less accurate,
but that there are no significant differences in accuracy
among the other models.

6 Conclusions
We have shown that (log-)linear sequence labeling mod-
els trained discriminatively with general-purpose opti-
mization methods are a simple, competitive solution to
learning shallow parsers. These models combine the best

features of generative finite-state models and discrimina-
tive (log-)linear classifiers, and do NP chunking as well
as or better than “ad hoc” classifier combinations, which
were the most accurate approach until now. In a longer
version of this work we will also describe shallow pars-
ing results for other phrase types. There is no reason why
the same techniques cannot be used equally successfully
for the other types or for other related tasks, such as POS
tagging or named-entity recognition.

On the machine-learning side, it would be interest-
ing to generalize the ideas of large-margin classification
to sequence models, strengthening the results of Collins
(2002) and leading to new optimal training algorithms
with stronger guarantees against overfitting.

On the application side, (log-)linear parsing models
have the potential to supplant the currently dominant
lexicalized PCFG models for parsing by allowing much
richer feature sets and simpler smoothing, while avoid-
ing the label bias problem that may have hindered earlier
classifier-based parsers (Ratnaparkhi, 1997). However,
work in that direction has so far addressed only parse
reranking (Collins and Duffy, 2002; Riezler et al., 2002).
Full discriminative parser training faces significant algo-
rithmic challenges in the relationship between parsing al-
ternatives and feature values (Geman and Johnson, 2002)
and in computing feature expectations.
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Training CRFs with SMD 

1-D CRF chain for ConNLL-2000 Base NP chunking 
(predictable!) huge speed-up for online learning

32
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Training CRFs with SMD

BioNLP/NLPBA-2004 named-entity recognition task
2-D CRF lattices for vision (M. Schmidt & K. Murphy, UBC)

work well with loopy BP; more robust to overfitting

33
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SMD on 2-D CRF Lattices

 original      log. regr.       BFGS         SGD         SMD      SMD (PL)

      ground truth            logistic regression        SMD (loopy BP)

34



The imagination driving Australia’s ICT future.

Statistical Machine Learning Program                           www.nicta.com.au

Summary and Outlook

Summary:
data-rich ML problems need stochastic approximation
classical gradient methods are not up to the task
SMD provides gain adaptation for stochastic gradient
(Hv product gives cheap second-order information)

Wish List:
convergence & stability analysis for SMD (volunteers?)

gain matrix version of SMD (rotation invariance) 
online LBFGS;  proof that online CG can’t work
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