
Learning for Contextual Bandits

Alina Beygelzimer 1 John Langford 2

IBM Research1

Yahoo! Research2

NYC ML Meetup, Sept 21, 2010

Example of Learning through Exploration

Repeatedly:

1. A user comes to Yahoo! (with history of previous visits, IP address,
data related to his Yahoo! account)

2. Yahoo! chooses information to present (from urls, ads, news stories)

3. The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again, et cetera)

Yahoo! wants to interactively choose content and use the observed

feedback to improve future content choices.

Another Example: Clinical Decision Making

Repeatedly:

1. A patient comes to a doctor with
symptoms, medical history, test results

2. The doctor chooses a treatment

3. The patient responds to it

The doctor wants a policy for choosing
targeted treatments for individual patients.

The Contextual Bandit Setting

For t = 1, . . . ,T :

1. The world produces some context xt ∈ X

2. The learner chooses an action at ∈ {1, . . . ,K}

3. The world reacts with reward rt(at) ∈ [0, 1]

Goal:

Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with a large reference
class of possible policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑

t=1

rt(at)

Other names: associative reinforcement learning, associative bandits,

learning with partial feedback, bandits with side information

The Contextual Bandit Setting

For t = 1, . . . ,T :

1. The world produces some context xt ∈ X

2. The learner chooses an action at ∈ {1, . . . ,K}

3. The world reacts with reward rt(at) ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with a large reference
class of possible policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑

t=1

rt(at)

Other names: associative reinforcement learning, associative bandits,

learning with partial feedback, bandits with side information

The Contextual Bandit Setting

For t = 1, . . . ,T :

1. The world produces some context xt ∈ X

2. The learner chooses an action at ∈ {1, . . . ,K}

3. The world reacts with reward rt(at) ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean?

Efficiently competing with a large reference
class of possible policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑

t=1

rt(at)

Other names: associative reinforcement learning, associative bandits,

learning with partial feedback, bandits with side information

The Contextual Bandit Setting

For t = 1, . . . ,T :

1. The world produces some context xt ∈ X

2. The learner chooses an action at ∈ {1, . . . ,K}

3. The world reacts with reward rt(at) ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with a large reference
class of possible policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑

t=1

rt(at)

Other names: associative reinforcement learning, associative bandits,

learning with partial feedback, bandits with side information

The Contextual Bandit Setting

For t = 1, . . . ,T :

1. The world produces some context xt ∈ X

2. The learner chooses an action at ∈ {1, . . . ,K}

3. The world reacts with reward rt(at) ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with a large reference
class of possible policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑

t=1

rt(at)

Other names: associative reinforcement learning, associative bandits,

learning with partial feedback, bandits with side information

Basic Observation #1

This is not a supervised learning problem:

I We don’t know the reward of actions not taken—loss function
is unknown even at training time.

I Exploration is required to succeed (but still simpler than
reinforcement learning – we know which action is responsible
for each reward)

Basic Observation #2

This is not a bandit problem:

I In the bandit setting, there is no x , and the goal is to compete
with the set of constant actions. Too weak in practice.

I Generalization across x is required to succeed.

Outline

1. How can we Learn?

I online, stochastic

I online, non-stochastic

2. Can we reuse Supervised Learning?

3. How can we Evaluate?

4. Extensions of the Setting

Idea 1: Follow the Leader
Reference class of policies Π

Follow the Leader Algorithm (FTL): For t = 1, . . . ,T :

I Let πt ∈ Π be the policy maximizing the sum of rewards r(a) over
the previous rounds (x , a, r(a)) where πt(x) = a

I Observe features xt

I Choose action at = πt(xt)

I Receive rt(at)

Even in the stochastic setting, expected regret of FTL can be Ω(T):

Assume examples are drawn independently from D, and
Π = {π1 = a1, π2 = a2}:

D π1 π2

x1 with probability 1/2 0.1 0.1
x2 with probability 1/2 0 1

Expected regret is at least (T − 1)/8: x1 is generated in round 1, FTL

chooses π1, and then always acts according to π1.

Idea 1: Follow the Leader
Reference class of policies Π

Follow the Leader Algorithm (FTL): For t = 1, . . . ,T :

I Let πt ∈ Π be the policy maximizing the sum of rewards r(a) over
the previous rounds (x , a, r(a)) where πt(x) = a

I Observe features xt

I Choose action at = πt(xt)

I Receive rt(at)

Even in the stochastic setting, expected regret of FTL can be Ω(T):

Assume examples are drawn independently from D, and
Π = {π1 = a1, π2 = a2}:

D π1 π2

x1 with probability 1/2 0.1 0.1
x2 with probability 1/2 0 1

Expected regret is at least (T − 1)/8: x1 is generated in round 1, FTL

chooses π1, and then always acts according to π1.

Idea 1: Follow the Leader
Reference class of policies Π

Follow the Leader Algorithm (FTL): For t = 1, . . . ,T :

I Let πt ∈ Π be the policy maximizing the sum of rewards r(a) over
the previous rounds (x , a, r(a)) where πt(x) = a

I Observe features xt

I Choose action at = πt(xt)

I Receive rt(at)

Even in the stochastic setting, expected regret of FTL can be Ω(T):

Assume examples are drawn independently from D, and
Π = {π1 = a1, π2 = a2}:

D π1 π2

x1 with probability 1/2 0.1 0.1
x2 with probability 1/2 0 1

Expected regret is at least (T − 1)/8: x1 is generated in round 1, FTL

chooses π1, and then always acts according to π1.

Idea 2: Explore τ then Follow the Leader (EFTL-τ)

EFTL-τ :

1. Choose an action uniformly at random for the first τ rounds

2. Let π = FTL on the first τ rounds

3. Use π for the remaining T − τ rounds

Suppose all examples are drawn independently from a fixed distribution
D over X × [0, 1]K .

Theorem:
For all D and Π, EFTL-τ has regret O(T 2/3(K ln |Π|)1/3) with high
probability for τ ∼ T 2/3(K ln |Π|)1/3.

Idea 2: Explore τ then Follow the Leader (EFTL-τ)

EFTL-τ :

1. Choose an action uniformly at random for the first τ rounds

2. Let π = FTL on the first τ rounds

3. Use π for the remaining T − τ rounds

Suppose all examples are drawn independently from a fixed distribution
D over X × [0, 1]K .

Theorem:
For all D and Π, EFTL-τ has regret O(T 2/3(K ln |Π|)1/3) with high
probability for τ ∼ T 2/3(K ln |Π|)1/3.

Theorem:
For all D and Π, EFTL-τ has regret O(T 2/3(K ln |Π|)1/3) with high
probability for τ ∼ T 2/3(K ln |Π|)1/3.

Proof:
Let

FTLτ (π) =
∑

(x,a,r(a))

K · 1[π(x) = a]r(a),

where (x , a, r(a)) ranges over the τ exploration examples.

A large deviation bound implies that with probability 1− δ,

FTLτ (π)

τ
deviates from E(x,r1,...,rK)∼D [rπ(x)]

by at most
√

K ln(|Π|/δ)
τ simultaneously for all π ∈ Π. Thus regret is

bounded by

τ + T

√
K ln(|Π|/δ)

τ
.

Optimizing τ completes the proof.

Unknown T : Dependence on T is removable by exploring with
probability = deviation bound in each round [Langford, Zhang ’07].

A key trick is to use importance-weighted empirical estimates of
the reward of each policy π:

r̂t(π(xt)) =

{
rt/pt(at) if π(xt) = at

0 otherwise

where pt(at) > 0 is the probability of choosing action at in round t.

Idea 3: Exponential Weight Algorithm for Exploration and
Exploitation with Experts

(EXP4) [Auer et al. ’95]

Initialization: ∀π ∈ Π : wt(π) = 1

For each t = 1, 2, . . .:

1. Observe xt and let for a = 1, . . . ,K

pt(a) = (1− Kpmin)

∑
π 1[π(xt) = a] wt(π)∑

π wt(π)
+ pmin,

where pmin =
√

ln |Π|
KT .

2. Draw at from pt , and observe reward rt(at).

3. Update for each π ∈ Π

wt+1(π) =

{
wt(π) exp

(
pmin

rt(at)
pt(at)

)
if π(xt) = at

wt(π) otherwise

Theorem: [Auer et al. ’95] For all oblivious sequences
(x1, r1), . . . , (xT , rT), EXP4 has expected regret

O
(√

TK ln |Π|
)
.

Theorem: [Auer et al. ’95] For any T , there exists an iid sequence such
that the expected regret of any player is Ω(

√
TK).

EXP4 can be modified to succeed with high probability
[Beygelzimer, Langford, Li, Reyzin, Schapire ’10].

The update step changes to use an upper confidence bound on its reward:

wt+1(π) = wt(π) exp

(
pmin

2

(
1[π(xt) = at]

rt(at)

pt(at)
+

1

pt(π(xt))

√
ln N/δ

KT

))

Theorem: [Auer et al. ’95] For all oblivious sequences
(x1, r1), . . . , (xT , rT), EXP4 has expected regret

O
(√

TK ln |Π|
)
.

Theorem: [Auer et al. ’95] For any T , there exists an iid sequence such
that the expected regret of any player is Ω(

√
TK).

EXP4 can be modified to succeed with high probability
[Beygelzimer, Langford, Li, Reyzin, Schapire ’10].

The update step changes to use an upper confidence bound on its reward:

wt+1(π) = wt(π) exp

(
pmin

2

(
1[π(xt) = at]

rt(at)

pt(at)
+

1

pt(π(xt))

√
ln N/δ

KT

))

Theorem: [Auer et al. ’95] For all oblivious sequences
(x1, r1), . . . , (xT , rT), EXP4 has expected regret

O
(√

TK ln |Π|
)
.

Theorem: [Auer et al. ’95] For any T , there exists an iid sequence such
that the expected regret of any player is Ω(

√
TK).

EXP4 can be modified to succeed with high probability
[Beygelzimer, Langford, Li, Reyzin, Schapire ’10].

The update step changes to use an upper confidence bound on its reward:

wt+1(π) = wt(π) exp

(
pmin

2

(
1[π(xt) = at]

rt(at)

pt(at)
+

1

pt(π(xt))

√
ln N/δ

KT

))

Summary so far

Supervised (ERM) Explore then FTL EXP4.P
Setting stochastic, full stochastic, bandit adversarial, bandit

Regret O(
√

T ln N) O(T 2/3(K ln N)1/3) O(
√

TK ln N)
Oraclizable? yes yes no

All are high probability results.

Outline

1. How can we Learn?

I online, stochastic

I online, non-stochastic

2. Can we reuse Supervised Learning?
I Argmax Regression
I Importance Weighted
I Offset Tree

3. How can we Evaluate?

4. Extensions of the Setting

The Optimization Problem

How do you compute

arg max
π∈Π

∑
(x ,a,r ,p)

r

p
1(π(x) = a)

for reasonable policy classes Π?

A tough question in general, but we can reuse solutions from
supervised learning.

The Optimization Problem

How do you compute

arg max
π∈Π

∑
(x ,a,r ,p)

r

p
1(π(x) = a)

for reasonable policy classes Π?

A tough question in general, but we can reuse solutions from
supervised learning.

Approach 1: The Regression Approach

Fact: The minimizer of squared loss is the conditional mean.

1. Convert each example (x , a, r , p) into ((x , a), r , 1/p) where
1/p is the importance weight of predicting r on (x , a)

2. Learn a regressor f to predict r given (x , a)

3. Let πf (x) = arg maxa f (x , a).

Theorem: For all D generating (x ,~r), all probability distributions
p(a | x) > 0 and f ,

policy-reg(πf ,D)︸ ︷︷ ︸
E(x,r)∼D[rπ∗(x)−rπf (x)]

≤ (2K square-reg(f ,D)︸ ︷︷ ︸
1
K

PK
a=1 Ex∼D(f (x ,a)−E~r∼D|x [ra])2

)1/2

where π∗ is an optimal policy.

Approach 1: The Regression Approach

Fact: The minimizer of squared loss is the conditional mean.

1. Convert each example (x , a, r , p) into ((x , a), r , 1/p) where
1/p is the importance weight of predicting r on (x , a)

2. Learn a regressor f to predict r given (x , a)

3. Let πf (x) = arg maxa f (x , a).

Theorem: For all D generating (x ,~r), all probability distributions
p(a | x) > 0 and f ,

policy-reg(πf ,D)︸ ︷︷ ︸
E(x,r)∼D[rπ∗(x)−rπf (x)]

≤ (2K square-reg(f ,D)︸ ︷︷ ︸
1
K

PK
a=1 Ex∼D(f (x ,a)−E~r∼D|x [ra])2

)1/2

where π∗ is an optimal policy.

Proof sketch: Fix x . Worst case turns out to be:

Arm
2 4 53 61

V
al

ue

True Payoff
Predicted Payoff

The regressor’s squared loss regret is 2

(
E~r∼D|x [rf ∗(x)−rf (x)]

2

)2

, out

of k regression estimates. Thus the average squared loss regret is

1

2k

E~r∼D|x
[
rf ∗(x) − rf (x)

]︸ ︷︷ ︸
policy regret


2

.

Solving for policy regret, finishes the proof.

Approach 2: Importance-Weighted Classification Approach
(Zadrozny’03)

1. For each (x , a, r , p) example, create an importance weighted
multiclass example (x , a, r/p), where

a multiclass label
r/p loss incurred if a is not predicted on x

2. Apply any importance weighted multiclass classification algorithm,
and use the output classifier to make predictions.

Importance-weighting multiclass classification can be reduced to binary
classification using known techniques, giving the following theorem.

Theorem: Same quantification as before, for all binary classifiers,

policy-reg ≤ 4K binary-reg

Approach 2: Importance-Weighted Classification Approach
(Zadrozny’03)

1. For each (x , a, r , p) example, create an importance weighted
multiclass example (x , a, r/p), where

a multiclass label
r/p loss incurred if a is not predicted on x

2. Apply any importance weighted multiclass classification algorithm,
and use the output classifier to make predictions.

Importance-weighting multiclass classification can be reduced to binary
classification using known techniques, giving the following theorem.

Theorem: Same quantification as before, for all binary classifiers,

policy-reg ≤ 4K binary-reg

Approach 3: The Offset Trick for K = 2 (two actions)

Partial label sample (x , a, r , p) 7→ binary importance weighted sample
(

x , a,
r− 1

2
p

)
if r ≥ 1

2(
x , a,

1
2
−r

p

)
if r < 1

2

a = the other label (action)

|r− 1
2 |

p = importance weight (instead of r/p as before)

Learn a binary classifier and use it as our policy

Approach 3: The Offset Trick for K = 2 (two actions)

Partial label sample (x , a, r , p) 7→ binary importance weighted sample
(

x , a,
r− 1

2
p

)
if r ≥ 1

2(
x , a,

1
2
−r

p

)
if r < 1

2

a = the other label (action)

|r− 1
2 |

p = importance weight (instead of r/p as before)

Learn a binary classifier and use it as our policy

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Example 1

Given example (x , (1/2, 1)), where x is a feature vector, 1/2 is the
reward of action Left, and 1 is the reward of action Right, what is
the probability of generating (x , Left) and (x ,Right)?

We draw action Left with probability pLeft, contributing probability
pLeft
pLeft
|12 − 1

2 | = 0 to Left.
We draw action Right with probability pRight, contributing
probability

pRight

pRight
|1− 1

2 | = 1/2 to Right.

Learn to predict Right.

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Example 1

Given example (x , (1/2, 1)), where x is a feature vector, 1/2 is the
reward of action Left, and 1 is the reward of action Right, what is
the probability of generating (x , Left) and (x ,Right)?

We draw action Left with probability pLeft, contributing probability
pLeft
pLeft
|12 − 1

2 | = 0 to Left.
We draw action Right with probability pRight, contributing
probability

pRight

pRight
|1− 1

2 | = 1/2 to Right.

Learn to predict Right.

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Example 2

Given example (x , (0, 1)), where x is a feature vector, 0 is the
reward of action Left, and 1 is the reward of action Right, what is
the probability of generating (x , Left) and (x ,Right)?

We draw action Left with probability pLeft, contributing probability
pLeft
pLeft
|0− 1

2 | = 1/2 to Right.
We draw action Right with probability pRight, contributing
probability

pRight

pRight
|1− 1

2 | = 1/2 to Right.

Learn to predict Right, with double emphasis.

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Example 2

Given example (x , (0, 1)), where x is a feature vector, 0 is the
reward of action Left, and 1 is the reward of action Right, what is
the probability of generating (x , Left) and (x ,Right)?

We draw action Left with probability pLeft, contributing probability
pLeft
pLeft
|0− 1

2 | = 1/2 to Right.
We draw action Right with probability pRight, contributing
probability

pRight

pRight
|1− 1

2 | = 1/2 to Right.

Learn to predict Right, with double emphasis.

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Example 3

Given example (x , (0.75, 1)), where x is a feature vector, 0.75 is
the reward of action Left, and 1 is the reward of action Right,
what is the probability of generating (x , Left) and (x ,Right)?

Action Left contributes probability pLeft
pLeft
|0.75− 1

2 | = 1/4 to Left.

Action Right contributes probability
pRight

pRight
|1− 1

2 | = 1/2 to Right.

Action Right is preferred, with action Left occurring 1/3 of the
time. Noise rate is reduced from 3/7 (with offset 0) to 1/3.

Induced binary distribution D ′

I Draw contextual bandit sample (x , r) ∼ D and action a.

I With probability ∼ 1
p

∣∣r − 1
2

∣∣:
If r ≥ 1

2 , generate (x , a); otherwise generate (x , a).

I The induced problem is noisy. The importance trick reduces
the range of importances, reducing the noise rate.

Example 3

Given example (x , (0.75, 1)), where x is a feature vector, 0.75 is
the reward of action Left, and 1 is the reward of action Right,
what is the probability of generating (x , Left) and (x ,Right)?

Action Left contributes probability pLeft
pLeft
|0.75− 1

2 | = 1/4 to Left.

Action Right contributes probability
pRight

pRight
|1− 1

2 | = 1/2 to Right.

Action Right is preferred, with action Left occurring 1/3 of the
time. Noise rate is reduced from 3/7 (with offset 0) to 1/3.

Analysis for K = 2

Binary Offset Theorem

For all 2-action contextual bandit problems D, all action choosing
distributions, and all binary classifiers h,

policy-reg(h,D)︸ ︷︷ ︸
E(x,~r)∼D[rh∗(x)−rh(x)]

≤ binary-reg(h,D ′)︸ ︷︷ ︸
err(h,D′)−minh′ err(h′,D′)

where h∗ is an optimal policy. For K = 2, the policy using h is h.

Denoising for K > 2 arms
1 2 3 4 5 6

1 vs 2 3 vs 4 5 vs 6 7

{winner of 1 vs 2} vs {winner of 3 vs 4} {winner of 5 vs 6}
vs 7

.

I Each non-leaf predicts the best of a pair of winners from the
previous round.

I Use the same offsetting construction at each node.

I Filtering: A training example for a node is formed conditioned on
the predictions of classifiers closer to the leaves.

I Policy: Follow the chain of predictions from root to leaf, output the
leaf.

Training on example (x, 3, 0.75, 0.5)

1 2 3 4 5 6

f1,2 f3,4 f5,6
7

f{1,2},{3,4} f{5,6},7

.

(x, Left, 0.25/0.5)

(x,Right, 0.25/0.5)
conditioned on f3,4(x) = Left

(x, Left, 0.25/0.5)
conditioned on f3,4(x) = Left, f{1,2},{3,4}(x) = Right

Note: Can be composed with either batch or online base learners

Training on example (x, 3, 0.75, 0.5)

1 2 3 4 5 6

f1,2 f3,4 f5,6
7

f{1,2},{3,4} f{5,6},7

.

(x, Left, 0.25/0.5)

(x,Right, 0.25/0.5)
conditioned on f3,4(x) = Left

(x, Left, 0.25/0.5)
conditioned on f3,4(x) = Left, f{1,2},{3,4}(x) = Right

Note: Can be composed with either batch or online base learners

Training on example (x, 3, 0.75, 0.5)

1 2 3 4 5 6

f1,2 f3,4 f5,6
7

f{1,2},{3,4} f{5,6},7

.

(x, Left, 0.25/0.5)

(x,Right, 0.25/0.5)
conditioned on f3,4(x) = Left

(x, Left, 0.25/0.5)
conditioned on f3,4(x) = Left, f{1,2},{3,4}(x) = Right

Note: Can be composed with either batch or online base learners

Denoising with K arms: Analysis

D ′ = random binary problem according to chance that binary
problem is fed an example under D.
h = binary classifier that predicts based on x and the choice of
binary problem according to D ′.
πh = offset tree policy based on h.

Offset Tree Theorem
For all K -choice contextual bandit problems D and binary
classifiers h:

policy-reg(πh,D) ≤ (K − 1) · binary-reg(h,D ′)

Lower bound: no reduction has a better regret analysis.

A Comparison of Approaches

Algorithm Policy Regret Bound

Argmax Regression
√

2K binary-reg

Importance-weighting Classification 4K binary-reg

Offset Tree (K − 1) binary-reg

Experimentally, the performance order is the same.

Outline

1. How can we Learn?

I online, stochastic

I online, non-stochastic

2. Can we reuse Supervised Learning?
I Argmax Regression
I Importance Weighted
I Offset Tree

3. How can we Evaluate?
I A static policy
I A dynamic policy

4. Setting Extensions

Olivier Chapelle wanted a Learning to Rank challenge.

There was a training set, a leaderboard test set, and a completely
heldout test set that determined the winner.
The challenge design:

1. Minimized bias towards particular methods.

2. Has a convergent quality estimator.

Can the same be done for contextual bandits?

The Evaluation Problem

Given data of the form (x , a, r , p)∗, how do we evaluate a
contextual bandit solving algorithm?

Method 1: Deploy algorithm in the world.

1. Found company.

2. Get lots of business.

3. Deploy algorithm.

VERY expensive and VERY noisy.

The Evaluation Problem

Given data of the form (x , a, r , p)∗, how do we evaluate a
contextual bandit solving algorithm?

Method 1: Deploy algorithm in the world.

1. Found company.

2. Get lots of business.

3. Deploy algorithm.

VERY expensive and VERY noisy.

The Evaluation Problem

Given data of the form (x , a, r , p)∗, how do we evaluate a
contextual bandit solving algorithm?

Method 1: Deploy algorithm in the world.

1. Found company.

2. Get lots of business.

3. Deploy algorithm.

VERY expensive and VERY noisy.

How do we measure a Static Policy?
Let π : X → A be a policy mapping features to actions. How do
we evaluate it?

Answer: Collect T samples of the form (x , a, pa, ra) where
pa = p(a|x) is the probability of choosing action a, then evaluate:

Value(π) =
1

T

∑
(x ,a,pa,ra)

raI (π(x) = a)

pa

Theorem: For all policies π, for all IID data distributions D,
Value(π) is an unbiased estimate of the expected reward of π:

E(x ,~r)∼D

[
rπ(x)

]
= E Value(π)

with deviations bounded by [Kearns et al. ’00, adapted]:

O

(
1√

T min pa

)
Proof: [Part 1] ∀π, x , p(a), ra:

Ea∼p

[
raI (π(x)=a)

p(a)

]
=
∑

a p(a) raI (π(x)=a)
p(a) = rπ(x)

How do we measure a Static Policy?
Let π : X → A be a policy mapping features to actions. How do
we evaluate it?
Answer: Collect T samples of the form (x , a, pa, ra) where
pa = p(a|x) is the probability of choosing action a, then evaluate:

Value(π) =
1

T

∑
(x ,a,pa,ra)

raI (π(x) = a)

pa

Theorem: For all policies π, for all IID data distributions D,
Value(π) is an unbiased estimate of the expected reward of π:

E(x ,~r)∼D

[
rπ(x)

]
= E Value(π)

with deviations bounded by [Kearns et al. ’00, adapted]:

O

(
1√

T min pa

)
Proof: [Part 1] ∀π, x , p(a), ra:

Ea∼p

[
raI (π(x)=a)

p(a)

]
=
∑

a p(a) raI (π(x)=a)
p(a) = rπ(x)

How do we measure a Static Policy?
Let π : X → A be a policy mapping features to actions. How do
we evaluate it?
Answer: Collect T samples of the form (x , a, pa, ra) where
pa = p(a|x) is the probability of choosing action a, then evaluate:

Value(π) =
1

T

∑
(x ,a,pa,ra)

raI (π(x) = a)

pa

Theorem: For all policies π, for all IID data distributions D,
Value(π) is an unbiased estimate of the expected reward of π:

E(x ,~r)∼D

[
rπ(x)

]
= E Value(π)

with deviations bounded by [Kearns et al. ’00, adapted]:

O

(
1√

T min pa

)
Proof: [Part 1] ∀π, x , p(a), ra:

Ea∼p

[
raI (π(x)=a)

p(a)

]
=
∑

a p(a) raI (π(x)=a)
p(a) = rπ(x)

How do we measure a Dynamic Policy?
For a dynamic policy π is dependent on the history. How do we
know how good π is?

Progressive Validator(policy π, input (x , a, r , p)T)

Let h = ∅ a history, R = 0. For each event (x , a, r , p)

1. If π(h, x) = a

2. then R ← R + r/p

3. h← h ∪ (x , a, r , p)

Return R/T

A bit strange: requires π to use externally chosen a and p.

Theorem [Blum et al. ’99, Cesa-Bianchi et al ’04, Cesa-Bianchi &
Gentile ’08]: For all data distributions D, for all adaptively chosen
sequences of policies π1, π2, ... with high probability:∣∣∣∣∣∣ 1

T

∑
(x ,a,pa,ra)

raI (πt(x) = a)

pa
− 1

T

∑
t

E(x ,~r)∼D [rπt(x)]

∣∣∣∣∣∣ ≤ O

(
1√

T min pa

)

Is this adequate? No. This doesn’t show policy convergence.

How do we measure a Dynamic Policy?
For a dynamic policy π is dependent on the history. How do we
know how good π is?

Progressive Validator(policy π, input (x , a, r , p)T)

Let h = ∅ a history, R = 0. For each event (x , a, r , p)

1. If π(h, x) = a

2. then R ← R + r/p

3. h← h ∪ (x , a, r , p)

Return R/T

A bit strange: requires π to use externally chosen a and p.

Theorem [Blum et al. ’99, Cesa-Bianchi et al ’04, Cesa-Bianchi &
Gentile ’08]: For all data distributions D, for all adaptively chosen
sequences of policies π1, π2, ... with high probability:∣∣∣∣∣∣ 1

T

∑
(x ,a,pa,ra)

raI (πt(x) = a)

pa
− 1

T

∑
t

E(x ,~r)∼D [rπt(x)]

∣∣∣∣∣∣ ≤ O

(
1√

T min pa

)

Is this adequate? No. This doesn’t show policy convergence.

How do we measure a Dynamic Policy?
For a dynamic policy π is dependent on the history. How do we
know how good π is?

Progressive Validator(policy π, input (x , a, r , p)T)

Let h = ∅ a history, R = 0. For each event (x , a, r , p)

1. If π(h, x) = a

2. then R ← R + r/p

3. h← h ∪ (x , a, r , p)

Return R/T

A bit strange: requires π to use externally chosen a and p.

Theorem [Blum et al. ’99, Cesa-Bianchi et al ’04, Cesa-Bianchi &
Gentile ’08]: For all data distributions D, for all adaptively chosen
sequences of policies π1, π2, ... with high probability:∣∣∣∣∣∣ 1

T

∑
(x ,a,pa,ra)

raI (πt(x) = a)

pa
− 1

T

∑
t

E(x ,~r)∼D [rπt(x)]

∣∣∣∣∣∣ ≤ O

(
1√

T min pa

)
Is this adequate? No. This doesn’t show policy convergence.

How do we measure a Dynamic Policy?
For a dynamic policy π is dependent on the history. How do we
know how good π is?

Progressive Validator(policy π, input (x , a, r , p)T)

Let h = ∅ a history, R = 0. For each event (x , a, r , p)

1. If π(h, x) = a

2. then R ← R + r/p

3. h← h ∪ (x , a, r , p)

Return R/T

A bit strange: requires π to use externally chosen a and p.
Theorem [Blum et al. ’99, Cesa-Bianchi et al ’04, Cesa-Bianchi &
Gentile ’08]: For all data distributions D, for all adaptively chosen
sequences of policies π1, π2, ... with high probability:∣∣∣∣∣∣ 1

T

∑
(x ,a,pa,ra)

raI (πt(x) = a)

pa
− 1

T

∑
t

E(x ,~r)∼D [rπt(x)]

∣∣∣∣∣∣ ≤ O

(
1√

T min pa

)

Is this adequate? No. This doesn’t show policy convergence.

How do we measure a Dynamic Policy?
For a dynamic policy π is dependent on the history. How do we
know how good π is?

Progressive Validator(policy π, input (x , a, r , p)T)

Let h = ∅ a history, R = 0. For each event (x , a, r , p)

1. If π(h, x) = a

2. then R ← R + r/p

3. h← h ∪ (x , a, r , p)

Return R/T

A bit strange: requires π to use externally chosen a and p.
Theorem [Blum et al. ’99, Cesa-Bianchi et al ’04, Cesa-Bianchi &
Gentile ’08]: For all data distributions D, for all adaptively chosen
sequences of policies π1, π2, ... with high probability:∣∣∣∣∣∣ 1

T

∑
(x ,a,pa,ra)

raI (πt(x) = a)

pa
− 1

T

∑
t

E(x ,~r)∼D [rπt(x)]

∣∣∣∣∣∣ ≤ O

(
1√

T min pa

)
Is this adequate?

No. This doesn’t show policy convergence.

How do we measure a Dynamic Policy?
For a dynamic policy π is dependent on the history. How do we
know how good π is?

Progressive Validator(policy π, input (x , a, r , p)T)

Let h = ∅ a history, R = 0. For each event (x , a, r , p)

1. If π(h, x) = a

2. then R ← R + r/p

3. h← h ∪ (x , a, r , p)

Return R/T

A bit strange: requires π to use externally chosen a and p.
Theorem [Blum et al. ’99, Cesa-Bianchi et al ’04, Cesa-Bianchi &
Gentile ’08]: For all data distributions D, for all adaptively chosen
sequences of policies π1, π2, ... with high probability:∣∣∣∣∣∣ 1

T

∑
(x ,a,pa,ra)

raI (πt(x) = a)

pa
− 1

T

∑
t

E(x ,~r)∼D [rπt(x)]

∣∣∣∣∣∣ ≤ O

(
1√

T min pa

)
Is this adequate? No. This doesn’t show policy convergence.

How do we measure a Dynamic Policy? Idea 2

Policy Evaluator(policy π, input (x , a, r)T where a chosen
uniform at random)

Let h = ∅ a history, R = 0
For each event (x , a, r)

1. If π(h, x) = a

2. then h← h ∪ (x , a, r), R ← R + r

Return R/|h|

Theorem: [Li et al. ’10] For all history lengths T , For all dynamic
policies π, and all IID worlds D, the probability of a simulated
history of length T = the probability of the same history of length
T in the real world.

Easy proof by induction on history length.

How do we measure a Dynamic Policy? Idea 2

Policy Evaluator(policy π, input (x , a, r)T where a chosen
uniform at random)

Let h = ∅ a history, R = 0
For each event (x , a, r)

1. If π(h, x) = a

2. then h← h ∪ (x , a, r), R ← R + r

Return R/|h|

Theorem: [Li et al. ’10] For all history lengths T , For all dynamic
policies π, and all IID worlds D, the probability of a simulated
history of length T = the probability of the same history of length
T in the real world.

Easy proof by induction on history length.

How do we measure a Dynamic Policy? Idea 2

Policy Evaluator(policy π, input (x , a, r)T where a chosen
uniform at random)

Let h = ∅ a history, R = 0
For each event (x , a, r)

1. If π(h, x) = a

2. then h← h ∪ (x , a, r), R ← R + r

Return R/|h|

Theorem: [Li et al. ’10] For all history lengths T , For all dynamic
policies π, and all IID worlds D, the probability of a simulated
history of length T = the probability of the same history of length
T in the real world.

Easy proof by induction on history length.

Outline

1. How can we Learn?

I online, stochastic

I online, non-stochastic

2. Can we reuse Supervised Learning?
I Argmax Regression
I Importance Weighted
I Offset Tree

3. How can we Evaluate?
I A static policy
I A dynamic policy

4. Setting Extensions
I Missing ps.
I Double Robust Policy Estimation
I Linear Settings
I Nearest Neighbor Settings

The Problem

Given logged data of the form (x , a, r)∗ where

1. x = features

2. a = a chosen action

3. r = the observed reward for the chosen action.

find a policy π : x → a
maximizing Value(π) = E(x ,~r)∼D

[
rπ(x)

]

There is no p(a|x)!
Examples:

1. A fraction of all users were served by policy π1 and the rest by
policy π2.

2. Doctors in the US prescribe antibiotics more than doctors in
Europe.

3. An ad runs out of budget and is removed from consideration.

The Problem

Given logged data of the form (x , a, r)∗ where

1. x = features

2. a = a chosen action

3. r = the observed reward for the chosen action.

find a policy π : x → a
maximizing Value(π) = E(x ,~r)∼D

[
rπ(x)

]
There is no p(a|x)!

Examples:

1. A fraction of all users were served by policy π1 and the rest by
policy π2.

2. Doctors in the US prescribe antibiotics more than doctors in
Europe.

3. An ad runs out of budget and is removed from consideration.

The Problem

Given logged data of the form (x , a, r)∗ where

1. x = features

2. a = a chosen action

3. r = the observed reward for the chosen action.

find a policy π : x → a
maximizing Value(π) = E(x ,~r)∼D

[
rπ(x)

]
There is no p(a|x)!
Examples:

1. A fraction of all users were served by policy π1 and the rest by
policy π2.

2. Doctors in the US prescribe antibiotics more than doctors in
Europe.

3. An ad runs out of budget and is removed from consideration.

The Problem

Given logged data of the form (x , a, r)∗ where

1. x = features

2. a = a chosen action

3. r = the observed reward for the chosen action.

find a policy π : x → a
maximizing Value(π) = E(x ,~r)∼D

[
rπ(x)

]
There is no p(a|x)!
Examples:

1. A fraction of all users were served by policy π1 and the rest by
policy π2.

2. Doctors in the US prescribe antibiotics more than doctors in
Europe.

3. An ad runs out of budget and is removed from consideration.

The Problem

Given logged data of the form (x , a, r)∗ where

1. x = features

2. a = a chosen action

3. r = the observed reward for the chosen action.

find a policy π : x → a
maximizing Value(π) = E(x ,~r)∼D

[
rπ(x)

]
There is no p(a|x)!
Examples:

1. A fraction of all users were served by policy π1 and the rest by
policy π2.

2. Doctors in the US prescribe antibiotics more than doctors in
Europe.

3. An ad runs out of budget and is removed from consideration.

Main Result

Define: p(a|x) = Prt∼U(1...T)(πt(x) = a).

Learn predictor p̂(a|x) of p(a|x) on (x , a)∗ data.

Define: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)

max{τ,p̂(a|x)}
]

where τ = small number.

Theorem [Strehl et al. ’10]: For all IID D, for all logging policy
sequences π1, ..., πT , for all policies π with p(a|x) ≥ τ :

Value(π)−
√

reg(p̂)

τ ≤ E V̂ (π) ≤ Value(π)−
√

reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What happens when p(a|x) < τ? Bias growing with gap.

Main Result

Define: p(a|x) = Prt∼U(1...T)(πt(x) = a).

Learn predictor p̂(a|x) of p(a|x) on (x , a)∗ data.

Define: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)

max{τ,p̂(a|x)}
]

where τ = small number.

Theorem [Strehl et al. ’10]: For all IID D, for all logging policy
sequences π1, ..., πT , for all policies π with p(a|x) ≥ τ :

Value(π)−
√

reg(p̂)

τ ≤ E V̂ (π) ≤ Value(π)−
√

reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What happens when p(a|x) < τ? Bias growing with gap.

Main Result

Define: p(a|x) = Prt∼U(1...T)(πt(x) = a).

Learn predictor p̂(a|x) of p(a|x) on (x , a)∗ data.

Define: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)

max{τ,p̂(a|x)}
]

where τ = small number.

Theorem [Strehl et al. ’10]: For all IID D, for all logging policy
sequences π1, ..., πT , for all policies π with p(a|x) ≥ τ :

Value(π)−
√

reg(p̂)

τ ≤ E V̂ (π) ≤ Value(π)−
√

reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What happens when p(a|x) < τ? Bias growing with gap.

Main Result

Define: p(a|x) = Prt∼U(1...T)(πt(x) = a).

Learn predictor p̂(a|x) of p(a|x) on (x , a)∗ data.

Define: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)

max{τ,p̂(a|x)}
]

where τ = small number.

Theorem [Strehl et al. ’10]: For all IID D, for all logging policy
sequences π1, ..., πT , for all policies π with p(a|x) ≥ τ :

Value(π)−
√

reg(p̂)

τ ≤ E V̂ (π) ≤ Value(π)−
√

reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What happens when p(a|x) < τ? Bias growing with gap.

Main Result

Define: p(a|x) = Prt∼U(1...T)(πt(x) = a).

Learn predictor p̂(a|x) of p(a|x) on (x , a)∗ data.

Define: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)

max{τ,p̂(a|x)}
]

where τ = small number.

Theorem [Strehl et al. ’10]: For all IID D, for all logging policy
sequences π1, ..., πT , for all policies π with p(a|x) ≥ τ :

Value(π)−
√

reg(p̂)

τ ≤ E V̂ (π) ≤ Value(π)−
√

reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What happens when p(a|x) < τ?

Bias growing with gap.

Main Result

Define: p(a|x) = Prt∼U(1...T)(πt(x) = a).

Learn predictor p̂(a|x) of p(a|x) on (x , a)∗ data.

Define: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)

max{τ,p̂(a|x)}
]

where τ = small number.

Theorem [Strehl et al. ’10]: For all IID D, for all logging policy
sequences π1, ..., πT , for all policies π with p(a|x) ≥ τ :

Value(π)−
√

reg(p̂)

τ ≤ E V̂ (π) ≤ Value(π)−
√

reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What happens when p(a|x) < τ? Bias growing with gap.

Experimental Results I
Dataset = 64.7M (x , a, r) triples with a uniform at random.
Actions a range over 20 choices.

1. run deterministic exploration algorithm (“LinUCB”) with
Policy evaluator.

2. Define p̂ and evaluate new policy.

1E−4 1E−3 1E−2 1E−1

1.3

1.4

1.5

1.6

1.7

τ

nC
T

R

offline estimate
ground truth

Experimental Results II

Dataset = 35M (x , a, r) triples + 19M triples in test set. Ads a
range over 880K choices.

Method τ Estimate Interval

Learned 0.01 0.0193 [0.0187,0.0206]

Random 0.01 0.0154 [0.0149,0.0166]

Learned 0.05 0.0132 [0.0129,0.0137]

Random 0.05 0.0111 [0.0109,0.0116]

Naive 0.05 0.0 [0,0.0071]

Learned = optmizing V̂ over ads with p̂(a|x) > 0 using a linear
regressor.
Random = choosing randomly amongst ads with p̂(a|x) > 0.
Naive = supervised learning approach.

Double Robust Policy Evaluation

Basic question: Can we reduce the variance of a policy estimate?
Suppose we have an estimate r̂(a, x), then we can form an
estimator according to:

(r − r̂(a, x))I (π(x) = a)

p(a|x)
+ r̂(π(x), x)

Or even:
(r − r̂(a, x))I (π(x) = a)

p̂(a|x)
+ r̂(π(x), x)

Theorem: If p̂(a|x) = p(a|x) or r̂(a, x) = E~r∼D|x [ra] then
E estimator = truth.
(And if r̂(a, x) = E~r∼D|x [ra] it converges faster than the old
estimator. Much faster when conditional variance is small.)

The Linear Setting

In the basic linear setting, assume:
∃w : 〈w , xa〉 = E(x ,~r)∼Dra where xa is a d dimension space.

[Auer 2002, Dani Hayes Kakade 2008, Lugosi & Cesa-Bianchi
2009] Theorem: For all true w with ||w || < C , with probability
1− δ the regret of the algorithm is

Õ(poly(d)
√

T)

Observation: realizable ⇒ all updates useful ⇒ weak K .

(But algorithms inconsistent when no perfect w exists.)
Another variant: Assume that all actions in a convex set are
possible.

The Nearest Neighbor Setting

[Slivkins 09, Lu & Pal2 10]
Assume ∃ known s(·, ·) satisfying
∀x , a, x ′, a′ : s((x , a), (x ′, a′)) ≥ |E [ra|x]− E [ra′ |x ′]|.
Theorem: For all problems, the online regret is bounded by

Õ(T 1−1/(2+dx +dy))

where dx and dy are measures of dimensionality.

Basic observation: You can first explore actions at course scale and
then zoom in on the plausibly interesting areas.

Missing Pieces

1. How do we efficiently achieve the optimality of EXP4(P)
given an oracle optimizer? Given an oracle that optimizes over
policies, how can we use it to efficiently achieve EXP4(P)
guarantees, at least in an IID setting? (New approach coming
soon.)

2. How do we deal with delayed rewards? In the real world,
reward information is not instantaneous. (Analysis coming
soon.)

3. How do we cope with priors over policies? Often we have
some belief that one is better than another at the outset.

Some further discussion in posts at http://hunch.net

Missing Pieces

1. How do we efficiently achieve the optimality of EXP4(P)
given an oracle optimizer? Given an oracle that optimizes over
policies, how can we use it to efficiently achieve EXP4(P)
guarantees, at least in an IID setting? (New approach coming
soon.)

2. How do we deal with delayed rewards? In the real world,
reward information is not instantaneous. (Analysis coming
soon.)

3. How do we cope with priors over policies? Often we have
some belief that one is better than another at the outset.

Some further discussion in posts at http://hunch.net

Missing Pieces

1. How do we efficiently achieve the optimality of EXP4(P)
given an oracle optimizer? Given an oracle that optimizes over
policies, how can we use it to efficiently achieve EXP4(P)
guarantees, at least in an IID setting? (New approach coming
soon.)

2. How do we deal with delayed rewards? In the real world,
reward information is not instantaneous. (Analysis coming
soon.)

3. How do we cope with priors over policies? Often we have
some belief that one is better than another at the outset.

Some further discussion in posts at http://hunch.net

Missing Pieces

1. How do we efficiently achieve the optimality of EXP4(P)
given an oracle optimizer? Given an oracle that optimizes over
policies, how can we use it to efficiently achieve EXP4(P)
guarantees, at least in an IID setting? (New approach coming
soon.)

2. How do we deal with delayed rewards? In the real world,
reward information is not instantaneous. (Analysis coming
soon.)

3. How do we cope with priors over policies? Often we have
some belief that one is better than another at the outset.

Some further discussion in posts at http://hunch.net

Missing Pieces

1. How do we efficiently achieve the optimality of EXP4(P)
given an oracle optimizer? Given an oracle that optimizes over
policies, how can we use it to efficiently achieve EXP4(P)
guarantees, at least in an IID setting? (New approach coming
soon.)

2. How do we deal with delayed rewards? In the real world,
reward information is not instantaneous. (Analysis coming
soon.)

3. How do we cope with priors over policies? Often we have
some belief that one is better than another at the outset.

Some further discussion in posts at http://hunch.net

Bibliography (Presentation order)

[Epoch-Greedy] John Langford and Tong Zhang, The
Epoch-Greedy Algorithm for Contextual Multi-armed Bandits
NIPS 2007.

[EXP4] Peter Auer, Nicol Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The non-stochastic multi-armed bandit
problem. SIAM Journal on Computing, 32(1):48-77, 2002.

[EXP4P] Alina Beygelzimer, John Langford, Lihong Li, Lev
Reyzin, Robert E. Schapire, An Optimal High Probability
Algorithm for the Contextual Bandit Problem,
http://arxiv.org/abs/1002.4058

[Offset Tree] Alina Beygelzimer and John Langford, The
Offset Tree for Learning with Partial Labels, KDD 2009.

Bibliography II

[Policy Deviations] Michael Kearns, Yishay Mansour, and
Andrew Ng, Approximate planning in large POMDPs via
reusable trajectories, NIPS 2000

[Progressive Validation] Avrim Blum, Adam Kalai, and John
Langford, Beating the Holdout: Bounds for KFold and
Progressive Cross-Validation, COLT99.

[Progressive Validation II] Nicolo Cesa-Bianchi, Alex Conconi,
and Claudio Gentile, On the generalization ability of on-line
learning algorithms IEEE Transactions on Information Theory,
50(9):2050-2057, 2004.

[Progressive Validatin III] Nicolo Cesa-Bianchi and Claudio
Gentile Improved risk tail bounds for on-line algorithms IEEE
Transactions on Information Theory, 54(1)386-390, 2008.

Bibliography III

[Nonstationary Policy Evaluation] Lihong Li, Wei Chu, John
Langford, Robert Schapire, A Contextual Bandit Approach to
Personalized News Recommendation, WWW 2010.

[Exploration Scavenging] John Langford, Alexander Strehl,
and Jennifer Wortman, Exploration Scavenging, ICML 2008.

[Implicit Exploration] Alex Strehl, John Langford, Sham
Kakade, Lihong Li, Learning from Logged Implicit Exploration
Data, http://arxiv.org/abs/1003.0120

[Double Robust I] Elad Hazan, Satyen Kale, Better Algorithms
for Benign Bandits, SODA 2009.

[Double Robust II] David Chan, Rong Ge, Ori Gershony, Tim
Hesterberg, Diane Lambert, Evaluating Online Ad Campaigns
in a Pipeline: Causal Models at Scale, KDD 2010.

Bibliography IV

[Linear I] Peter Auer. Using confidence bounds for
exploitation-exploration trade-offs. Journal of machine
learning research, pages 397–422, 2002.

[Linear II] Varsha Dani, Thomas Hayes, and Sham Kakade,
Stochastic Linear Optimization under Bandit Feedback, COLT
2008.

[Linear III] Nicolo Cesa-Bianchi and Gabor Lugosi,
Combinatorial bandits, COLT 2009.

[Contextual Similarity I] Alex Slivkins. Contextual bandits
with similarity information, Arxiv 2009.

[Contextual Similarity II] Tyler Lu, David Pal, Martin Pal,
Contextual Multi-Armed Bandits, AIStats 2010.

