COMS-4771 Spring 2008
Paper 3 Quiz
Name: \qquad
Taskar, Guestrin and Koller, Max-Margin Markov Networks (2003).
You have 30 minutes to complete the questions. The quiz is worth 10 points.
Question 1 (2 points): Give an example of a set of basis functions $f_{k}(\mathbf{x}, \mathbf{y})$ that you would use for the optical character recognition task (in equation (1) in the paper).

There are many possible answers. If the input \mathbf{x} is a vector of pixel values and \mathbf{y} is a word, the basis functions can be defined as in equation (2) in the paper, where a pairwise basis function $f_{k}\left(\mathbf{x}, y_{i}, y_{j}\right)$ is the indicator function

$$
\mathbf{I}\left[\mathbf{x}_{p_{1}^{k}}=\text { on } \wedge \mathbf{x}_{p_{2}^{k}}=\text { on } \wedge y_{i}=c_{1}^{k} \wedge y_{j}=c_{2}^{k}\right],
$$

where k ranges over $\left\langle p_{1}^{k}, p_{2}^{k}, c_{1}^{k}, c_{2}^{k}\right\rangle$ (pixel-character) combinations.

Question 2 (3 points):

- Give one reason to prefer a conditional model (a model of $p(\mathbf{y} \mid \mathbf{x})$) over a generative model (a model of $p(\mathbf{x}, \mathbf{y})$).
- Give an example of a regime where it makes sense to prefer a generative model over a conditional model.

A good approximation to the conditional distribution is certainly sufficient for classification. Given enough data, a conditional model will optimize the approximation for the optimal $p(\mathbf{y} \mid \mathbf{x})$, while the generative model may tune the approximation away from optimal conditional distribution, leading to worse discriminative performance.

However, a generative model typically needs fewer examples to find a good estimate of the joint distribution, so in a regime with very few training samples (relative to the number of parameters), generative models may outperform conditional models on the classification task.

Question 3 (3 points): The primal objective in the paper minimizes a convex upper bound on some loss function-what loss function? How can the loss be generalized without breaking the reduction to a polynomial size QP?

Hamming error. The loss can be generalizes to any decomposable loss without breaking the reduction.

Question 4 (2 points): Can a similar polynomial reduction be done for l_{1} norm on w (instead of $\left.l_{2}\right)$? Explain your answer.

Yes. A similar polynomial reduction can be done for any convex penalty including l_{1}.

