\qquad
Dasgupta and Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.
You have 30 minutes to complete the questions. The quiz is worth 10 points, so you can choose either one of the two problems below.

Question 1 (10 points): The Johnson-Lindenstrauss Lemma says that for any $\epsilon>0$, any set of n points in a Euclidean space can be embedded into a Euclidean space of dimension $k=c(\epsilon) \log n$ with distortion at most ϵ, where $c(\epsilon) \leq O\left(1 / \epsilon^{2}\right)$. Show that this is nearly tight, i.e., $c(\epsilon)$ must be at least $\Omega\left(1 / \epsilon^{2} \log (1 / \epsilon)\right)$.

You can use the following theorem:
Theorem (Alon): Let B be an $n \times n$ symmetric real-valued matrix with $b_{i i}=1$ and $\left|b_{i j}\right| \leq \epsilon$ for all $i \neq j$. If the rank of B is d and $\frac{1}{\sqrt{n}} \leq \epsilon \leq 1 / 2$, then

$$
d \geq \Omega\left(\frac{1}{\epsilon^{2} \log (1 / \epsilon)} \log n\right) .
$$

Solution: If we have $n+1$ points in R^{k}, and the distance between any pair of distinct points in the set is between $1-\epsilon$ and $1+\epsilon$ (think of embedding the unit ($n+1$)-cube), we can put one of the points at the origin and shift the other n points by at most $O(\epsilon)$ making sure that their distance from this origin is exactly 1 . By the triangle inequality, the distance between any pair of the shifted points is still $1+O(\epsilon)$. Denote point i by v_{i} and consider an $n \times n$ matrix A with $a_{i j}=v_{i} \cdot v_{j}$. All diagonal entries are 1 . All other entries are $1 / 2+O(\epsilon)$ (since $\left.v_{i} \cdot v_{j} \approx\left\|v_{i}\right\|\left\|v_{j}\right\| \cos \left(60^{\circ}\right)=1 / 2+O(\epsilon)\right)$. Since the points are in R^{k}, the rank is at most k. To apply Alon's theorem above, consider the matrix $B=2 A-I$, where I is the $n \times n$ matrix with every entry being 1 (so that B satisfies the conditions of the theorem). The rank of B is at most $k+1=O(\log n)$. According to the theorem, this rank is at least $\Omega\left(\frac{1}{\epsilon^{2} \log (1 / \epsilon)} \log n\right)$, implying the theorem.

Question 2 (10 points): For algorithmic applications of the Johnson-Lindenstrauss lemma, it is important to be able to generate and evaluate the random linear mapping fast. So the quest has been to create sparse mappings. Consider the following $k \times n$ sparse random matrix where the fraction of nonzero entries tends to 0 :

The entries of are independent random variables and each of them attains value 0 with probability $1-q$, and a value drawn from the normal distribution with zero mean and variance $1 / q$ with probability q, for $q=O(1 / n)$.

What is the problem with using such a matrix directly?
Answer: Call the map defined by the matrix $f: \mathrm{R}^{n} \rightarrow \mathrm{R}^{k}$. Recall that we need

$$
\operatorname{Pr}[(1-\epsilon)\|x\| \leq\|f(x)\| \leq(1+\epsilon)\|x\|] \geq 1-\frac{1}{n^{2}}
$$

The problem is that the length of the image $\|f(x)\|$ is not sufficiently concentrated for some vectors, for example, for $x=(1,0, \ldots, 0)$. The vector x has to be well-spread in the sense that $\max _{j} x_{j}$ is close to $1 / \sqrt{n}$. See Ailon and Chazelle (Approximating nearest neighbors and the fast JL transform, STOC 2006) for a clever way of dealing with this obstacle.

