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Probability�We use probabilities p(x) to represent our beliefs B(x) about thestates x of the world.� There is a formal 
al
ulus for manipulating un
ertaintiesrepresented by probabilities.� Any 
onsistent set of beliefs obeying the Cox Axioms 
an bemapped into probabilities.1. Rationally ordered degrees of belief:if B(x) > B(y) and B(y) > B(z) then B(x) > B(z)2. Belief in x and its negation �x are related: B(x) = f [B(�x)℄3. Belief in 
onjun
tion depends only on 
onditionals:B(x and y) = g[B(x); B(yjx)℄ = g[B(y); B(xjy)℄

Random Variables and Densities� Random variables X represents out
omes or states of world.Instantiations of variables usually in lower 
ase: xWe will write p(x) to mean probability(X = x).� Sample Spa
e: the spa
e of all possible out
omes/states.(May be dis
rete or 
ontinuous or mixed.)� Probability mass (density) fun
tion p(x) � 0Assigns a non-negative number to ea
h point in sample spa
e.Sums (integrates) to unity: Px p(x) = 1 or Rx p(x)dx = 1.Intuitively: how often does x o

ur, how mu
h do we believe in x.� Ensemble: random variable + sample spa
e+ probability fun
tion

Expe
tations, Moments� Expe
tation of a fun
tion a(x) is written E[a℄ or haiE[a℄ = hai =Xx p(x)a(x)

e.g. mean =Px xp(x), varian
e =Px(x� E[x℄)2p(x)�Moments are expe
tations of higher order powers.(Mean is �rst moment. Auto
orrelation is se
ond moment.)� Centralized moments have lower moments subtra
ted away(e.g. varian
e, skew, 
urtosis).� Deep fa
t: Knowledge of all orders of moments
ompletely de�nes the entire distribution.



Joint Probability� Key 
on
ept: two or more random variables may intera
t.Thus, the probability of one taking on a 
ertain value depends onwhi
h value(s) the others are taking.�We 
all this a joint ensemble and writep(x; y) = prob(X = x and Y = y)
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Marginal Probabilities�We 
an "sum out" part of a joint distribution to get the marginaldistribution of a subset of variables:p(x) =Xy p(x; y)

� This is like adding sli
es of the table together.
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� Another equivalent de�nition: p(x) =Py p(xjy)p(y).

Conditional Probability� If we know that some event has o

urred, it 
hanges our beliefabout the probability of other events.� This is like taking a "sli
e" through the joint table.p(xjy) = p(x; y)=p(y)
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Bayes' Rule�Manipulating the basi
 de�nition of 
onditional probability givesone of the most important formulas in probability theory:p(xjy) = p(yjx)p(x)p(y) = p(yjx)p(x)Px0 p(yjx0)p(x0)� This gives us a way of "reversing"
onditional probabilities.� Thus, all joint probabilities 
an be fa
tored by sele
ting an orderingfor the random variables and using the "
hain rule":p(x; y; z; : : :) = p(x)p(yjx)p(zjx; y)p(: : : jx; y; z)



Independen
e & Conditional Independen
e� Two variables are independent i� their joint fa
tors:p(x; y) = p(x)p(y)
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� Two variables are 
onditionally independent given a third one if forall values of the 
onditioning variable, the resulting sli
e fa
tors:p(x; yjz) = p(xjz)p(yjz) 8z

Be Careful!�Wat
h the 
ontext:e.g. Simpson's paradox� De�ne random variables and sample spa
es 
arefully:e.g. Prisoner's paradox

Entropy�Measures the amount of ambiguity or un
ertainty in a distribution:H(p) = �Xx p(x) log p(x)

� Expe
ted value of � log p(x) (a fun
tion whi
h depends on p(x)!).�H(p) > 0 unless only one possible out
omein whi
h 
ase H(p) = 0.�Maximal value when p is uniform.� Tells you the expe
ted "
ost" if ea
h event 
osts � log p(event)

Cross Entropy (KL Divergen
e)� An assymetri
 measure of the distan
ebetween two distributions:KL[pkq℄ =Xx p(x)[log p(x)� log q(x)℄

�KL > 0 unless p = q then KL = 0� Tells you the extra 
ost if events were generated by p(x) butinstead of 
harging under p(x) you 
harged under q(x).



Statisti
s� Probability: inferring probabilisti
 quantities for data given �xedmodels (e.g. prob. of events, marginals, 
onditionals, et
).� Statisti
s: inferring a model given �xed data observations(e.g. 
lustering, 
lassi�
ation, regression).�Many approa
hes to statisti
s:frequentist, Bayesian, de
ision theory, ...

Some (Conditional) Probability Fun
tions� Probability density fun
tions p(x) (for 
ontinuous variables) orprobability mass fun
tions p(x = k) (for dis
rete variables) tell ushow likely it is to get a parti
ular value for a random variable(possibly 
onditioned on the values of some other variables.)�We 
an 
onsider various types of variables: binary/dis
rete(
ategori
al), 
ontinuous, interval, and integer 
ounts.� For ea
h type we'll see some basi
 probability models whi
h areparametrized families of distributions.

(Conditional) Probability Tables� For dis
rete (
ategori
al) quantities, the most basi
 parametrizationis the probability table whi
h lists p(xi = kth value).� Sin
e PTs must be nonnegative and sum to 1, for k-ary variablesthere are k � 1 free parameters.� If a dis
rete variable is 
onditioned on the values of some otherdis
rete variables we make one table for ea
h possible setting of theparents: these are 
alled 
onditional probability tables or CPTs.
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Exponential Family� For (
ontinuous or dis
rete) random variable xp(xj�) = h(x) expf�>T (x)� A(�)g= 1Z(�)h(x) expf�>T (x)gis an exponential family distribution withnatural parameter �.� Fun
tion T (x) is a suÆ
ient statisti
.� Fun
tion A(�) = logZ(�) is the log normalizer.� Key idea: all you need to know about the data is 
aptured in thesummarizing fun
tion T (x).



Bernoulli� For a binary random variable with p(heads)=�:p(xj�) = �x(1� �)1�x= exp�log� �1� ��x + log(1� �)�� Exponential family with:� = log �1� �T (x) = xA(�) = � log(1� �) = log(1 + e�)h(x) = 1� The logisti
 fun
tion relates the natural parameter and the 
han
eof heads � = 11 + e��
Poisson� For an integer 
ount variable with rate �:p(xj�) = �xe��x!= 1x! expfx log �� �g� Exponential family with: � = log �T (x) = xA(�) = � = e�h(x) = 1x!� e.g. number of photons x that arrive at a pixel during a �xedinterval given mean intensity ��Other 
ount densities: binomial, exponential.

Multinomial� For a set of integer 
ounts on k trials

p(xj�) = k!x1!x2! � � � xn!�x11 �x22 � � � �xnn = h(x) exp8<:Xi xi log �i9=;� But the parameters are 
onstrained: Pi �i = 1.So we de�ne the last one �n = 1�Pn�1i=1 �i.p(xj�) = h(x) expnPn�1i=1 log ��i�n� xi + k log �no� Exponential family with:�i = log �i � log �nT (xi) = xiA(�) = �k log �n = k logPi e�ih(x) = k!=x1!x2! � � � xn!

� The softmax fun
tion relates the basi
 and natural parameters:�i = e�iPj e�j



Gaussian (normal)� For a 
ontinuous univariate random variable:p(xj�; �2) = 1p2�� exp�� 12�2(x� �)2�

= 1p2�� exp(�x�2 � x22�2 � �22�2 � log �)

� Exponential family with:� = [�=�2 ; �1=2�2℄T (x) = [x ; x2℄A(�) = log � + �=2�2h(x) = 1=p2�� Note: a univariate Gaussian is a two-parameter distribution with atwo-
omponent ve
tor of suÆ
ient statistis.

Multivariate Gaussian Distribution� For a 
ontinuous ve
tor random variable:p(xj�;�) = j2��j�1=2 exp��12(x� �)>��1(x� �)�

� Exponential family with:� = [��1� ; �1=2��1℄T (x) = [x ; xx>℄A(�) = log j�j=2 + �>��1�=2h(x) = (2�)�n=2� SuÆ
ient statisti
s: mean ve
tor and 
orrelation matrix.�Other densities: Student-t, Lapla
ian.� For non-negative values use exponential, Gamma, log-normal.

Important Gaussian Fa
ts� All marginals of a Gaussian are again Gaussian.Any 
onditional of a Gaussian is again Gaussian.
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Gaussian Marginals/Conditionals� To �nd these parameters is mostly linear algebra:Let z = [x>y>℄> be normally distributed a

ording to:z = �xy� � N ��ab� ; � A CC> B��where C is the (non-symmetri
) 
ross-
ovarian
e matrix between xand y whi
h has as many rows as the size of x and as many
olumns as the size of y.The marginal distributions are:x � N (a;A)y � N (b;B)and the 
onditional distributions are:xjy � N (a +CB�1(y � b);A�CB�1C>)yjx � N (b +C>A�1(x� a);B�C>A�1C)



Moments� For 
ontinuous variables, moment 
al
ulations are important.�We 
an easily 
ompute moments of any exponential familydistribution by taking the derivatives of the log normalizer A(�).� The qth derivative gives the qth 
entred moment.dA(�)d� = meand2A(�)d�2 = varian
e� � ��When the suÆ
ient statisti
 is a ve
tor, partial derivatives need tobe 
onsidered.
Parameterizing Conditionals�When the variable(s) being 
onditioned on (parents) are dis
rete,we just have one density for ea
h possible setting of the parents.e.g. a table of natural parameters in exponential models or a tableof tables for dis
rete models.�When the 
onditioned variable is 
ontinuous, its value sets some ofthe parameters for the other variables.� A very 
ommon instan
e of this for regression is the\linear-Gaussian": p(yjx) = gauss(�>x; �).� For dis
rete 
hildren and 
ontinuous parents, we often use aBernoulli/multinomial whose paramters are some fun
tion f (�>x).

Generalized Linear Models (GLMs)� Generalized Linear Models: p(yjx) is exponential family with
onditional mean � = f (�>x).� The fun
tion f is 
alled the response fun
tion.� If we 
hose f to be the inverse of the mapping b/w 
onditionalmean and natural parameters then it is 
alled the 
anoni
alresponse fun
tion. � =  (�)f (�) =  �1(�)

Potential Fun
tions�We 
an be even more general and de�ne distributions by arbitraryenergy fun
tions proportional to the log probability.p(x) / expf�Xk Hk(x)g� A 
ommon 
hoi
e is to use pairwise terms in the energy:H(x) =Xi aixi + Xpairs ij wijxixj



Spe
ial variables� If 
ertain variables are always observed we may not want to modeltheir density. For example inputs in regression or 
lassi�
ation.This leads to 
onditional density estimation.� If 
ertain variables are always unobserved, they are 
alled hidden orlatent variables. They 
an always be marginalized out, but 
anmake the density modeling of the observed variables easier.(We'll see more on this later.)

Multiple Observations, Complete Data, IID Sampling� A single observation of the data X is rarely useful on its own.� Generally we have data in
luding many observations, whi
h 
reatesa set of random variables: D = fx1;x2; : : : ;xMg� Two very 
ommon assumptions:1. Observations are independently and identi
ally distributeda

ording to joint distribution of graphi
al model: IID samples.2. We observe all random variables in the domain on ea
hobservation: 
omplete data.

Likelihood Fun
tion� So far we have fo
used on the (log) probability fun
tion p(xj�)whi
h assigns a probability (density) to any joint 
on�guration ofvariables x given �xed parameters �.� But in learning we turn this on its head: we have some �xed dataand we want to �nd parameters.� Think of p(xj�) as a fun
tion of � for �xed x:L(�;x) = p(xj�)`(�;x) = log p(xj�)This fun
tion is 
alled the (log) \likelihood".� Chose � to maximize some 
ost fun
tion 
(�) whi
h in
ludes `(�):
(�) = `(�;D) maximum likelihood (ML)
(�) = `(�;D) + r(�) maximum a posteriori (MAP)=penalizedML(also 
ross-validation, Bayesian estimators, BIC, AIC, ...)

Maximum Likelihood� For IID data: p(Dj�) =Ym p(xmj�)

`(�;D) =Xm log p(xmj�)

� Idea of maximum likelihod estimation (MLE): pi
k the setting ofparameters most likely to have generated the data we saw:��ML = argmax� `(�;D)� Very 
ommonly used in statisti
s.Often leads to \intuitive", \appealing", or \natural" estimators.



Example: Bernoulli Trials�We observe M iid 
oin 
ips: D=H,H,T,H,: : :�Model: p(H) = � p(T ) = (1� �)� Likelihood:`(�;D) = log p(Dj�)= logYm �xm (1� �)1�xm

= log �Xm xm + log(1� �)Xm (1� xm)= log �NH + log(1� �)NT� Take derivatives and set to zero:�`�� = NH� � NT1� �) ��ML = NHNH +NT

Example: Multinomial�We observe M iid die rolls (K-sided): D=3,1,K,2,: : :�Model: p(k) = �k Pk �k = 1� Likelihood (for binary indi
ators [xm = k℄):`(�;D) = log p(Dj�)= logYm �xm = logYm �[xm=1℄1 : : : �[xm=k℄k=Xk log �kXm [xm = k℄ =Xk Nk log �k

� Take derivatives and set to zero (enfor
ing Pk �k = 1):�`��k = Nk�k �M
) ��k = NkM

Example: Univariate Normal�We observe M iid real samples: D=1.18,-.25,.78,: : :�Model: p(x) = (2��2)�1=2 expf�(x� �)2=2�2g� Likelihood (using probability density):`(�;D) = log p(Dj�)= �M2 log(2��2)� 12Xm (xm � �)2�2� Take derivatives and set to zero:�`�� = (1=�2)Pm(xm � �)�`��2 = �M2�2 + 12�4Pm(xm � �)2) �ML = (1=M )Pm xm�2ML = (1=M )Pm x2m � �2ML

Example: Univariate Normal
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Example: Linear Regression� In linear regression, some inputs (
ovariates,parents) and alloutputs (responses,
hildren) are 
ontinuous valued variables.� For ea
h 
hild and setting of dis
rete parents we use the model:p(yjx; �) = gauss(yj�>x; �2)� The likelihood is the familiar \squared error" 
ost:`(�;D) = � 12�2Xm (ym � �>xm)2

� The ML parameters 
an be solved for using linear least-squares:�`�� = �Xm (ym � �>xm)xm) ��ML = (X>X)�1X>Y

Example: Linear Regression
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Suffi
ient Statisti
s� A statisti
 is a fun
tion of a random variable.� T (X) is a \suÆ
ient statisti
" for X ifT (x1) = T (x2) ) L(�;x1) = L(�;x2) 8�� Equivalently (by the Neyman fa
torization theorem) we 
an write:p(xj�) = h (x; T (x)) g (T (x); �)� Example: exponential family models:p(xj�) = h(x) expf�>T (x)� A(�)g

Suffi
ient Statisti
s are Sums� In the examples above, the suÆ
ient statisti
s were merely sums(
ounts) of the data:Bernoulli: # of heads, tailsMultinomial: # of ea
h typeGaussian: mean, mean-squareRegression: 
orrelations� As we will see, this is true for all exponential family models:suÆ
ient statisti
s are average natural parameters.�Only exponential family models have simple suÆ
ient statisti
s.



MLE for Exponential Family Models� Re
all the probability fun
tion for exponential models:p(xj�) = h(x) expf�>T (x)� A(�)g� For iid data, suÆ
ient statisti
 is Pm T (xm):

`(�;D) = log p(Dj�) =  Xm log h(xm)!�MA(�)+ �>Xm T (xm)!

� Take derivatives and set to zero:�`�� =Pm T (xm)�M �A(�)��) �A(�)�� = 1MPm T (xm)�ML = 1MPm T (xm)re
alling that the natural moments of an exponential distributionare the derivatives of the log normalizer.

Basi
 Statisti
al Problems� Let's remind ourselves of the basi
 problems we dis
ussed on the�rst day: density estimation, 
lustering 
lassi�
ation and regression.� Density estimation is hardest. If we 
an do joint density estimationthen we 
an always 
ondition to get what we want:Regression: p(yjx) = p(y;x)=p(x)Classi�
ation: p(
jx) = p(
;x)=p(x)Clustering: p(
jx) = p(
;x)=p(x) 
 unobserved

Fundamental Operations with Distributions� Generate data: draw samples from the distribution. This ofteninvolves generating a uniformly distributed variable in the range[0,1℄ and transforming it. For more 
omplex distributions it mayinvolve an iterative pro
edure that takes a long time to produ
e asingle sample (e.g. Gibbs sampling, MCMC).� Compute log probabilities.When all variables are either observed or marginalized the result is asingle number whi
h is the log prob of the 
on�guration.� Inferen
e: Compute expe
tations of some variables given otherswhi
h are observed or marginalized.� Learning.Set the parameters of the density fun
tions given some (partially)observed data to maximize likelihood or penalized likelihood.

Learning� In AI the bottlene
k is often knowledge a
quisition.� Human experts are rare, expensive, unreliable, slow.� But we have lots of data.�Want to build systems automati
ally based on data and a smallamount of prior information (from experts).



Known Models�Many systems we build will be essentially probability models.� Assume the prior information we have spe
i�es type & stru
ture ofthe model, as well as the form of the (
onditional) distributions orpotentials.� In this 
ase learning � setting parameters.� Also possible to do \stru
ture learning" to learn model.

Jensen's Inequality� For any 
on
ave fun
tion f () and any distribution on x,E[f (x)℄ � f (E[x℄)

f(E[x])

E[f(x)]

� e.g. log() and p are 
on
ave� This allows us to bound expressions like log p(x) = logPz p(x; z)


