Probabilistic and Bayesian Analytics

Andrew W. Moore
Associate Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Copyright © 2001, Andrew W. Moore

Aug 25th, 2001

Probability

- The world is a very uncertain place
- 30 years of Artificial Intelligence and Database research danced around this fact
- And then a few AI researchers decided to use some ideas from the eighteenth century

Copyright © 2001, Andrew W. Moore

What we're going to do

- We will review the fundamentals of probability.
- It's really going to be worth it
- In this lecture, you'll see an example of probabilistic analytics in action: Bayes Classifiers

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 3

Discrete Random Variables

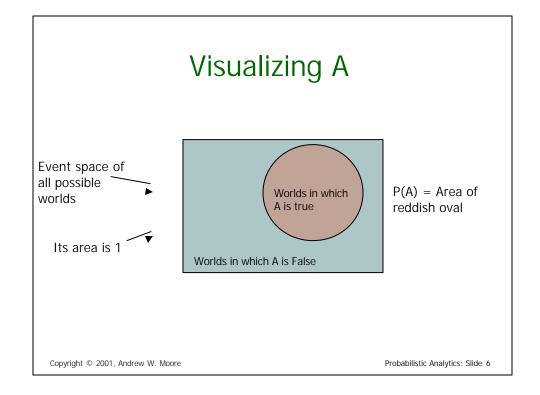
- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- A = The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You have Ebola

Copyright © 2001, Andrew W. Moore

Probabilities

- We write P(A) as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Copyright © 2001, Andrew W. Moore



The Axioms of Probability

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

Where do these axioms come from? Were they "discovered"? Answers coming up later.

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 7

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

0

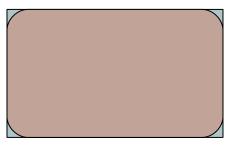
The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

Copyright © 2001, Andrew W. Moore

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)



The area of A can't get any bigger than 1

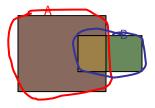
And an area of 1 would mean all worlds will have A true

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 9

Interpreting the axioms

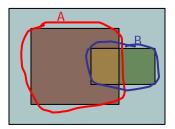
- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

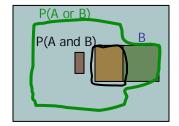


Copyright © 2001, Andrew W. Moore

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)





Simple addition and subtraction

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 11

These Axioms are Not to be Trifled With

- There have been attempts to do different methodologies for uncertainty
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer
 - Non-monotonic reasoning
- But the axioms of probability are the only system with this property:

If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

Copyright © 2001, Andrew W. Moore

Theorems from the Axioms

- $0 \le P(A) \le 1$, P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

From these we can prove:

$$P(\text{not } A) = P(\sim A) = 1 - P(A)$$

· How?

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 13

Side Note

- I am inflicting these proofs on you for two reasons:
 - 1. These kind of manipulations will need to be second nature to you if you use probabilistic analytics in depth
 - 2. Suffering is good for you

Copyright © 2001, Andrew W. Moore

Another important theorem

- $0 \le P(A) \le 1$, P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

From these we can prove:

$$P(A) = P(A \land B) + P(A \land \sim B)$$

How?

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 15

Multivalued Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\{v_1, v_2, ... v_k\}$
- Thus...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

Copyright © 2001, Andrew W. Moore

An easy fact about Multivalued Random Variables:

· Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

· And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

· It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{i=1}^{i} P(A = v_j)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 17

An easy fact about Multivalued Random Variables:

· Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

· And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

· It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{i=1}^{l} P(A = v_j)$$

And thus we can prove

$$\sum_{j=1}^{k} P(A = v_j) = 1$$

Copyright © 2001, Andrew W. Moore

Another fact about Multivalued Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

· And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

It's easy to prove that

$$P(B \land [A = v_1 \lor A = v_2 \lor A = v_i]) = \sum_{j=1}^{i} P(B \land A = v_j)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 19

Another fact about Multivalued Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

· And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$

· It's easy to prove that

$$P(B \land [A = v_1 \lor A = v_2 \lor A = v_i]) = \sum_{i=1}^{i} P(B \land A = v_j)$$

• And thus we can prove
$$P(B) = \sum_{j=1}^k P(B \land A = v_j)$$

Copyright © 2001, Andrew W. Moore

Elementary Probability in Pictures

 $\bullet \ P(\sim A) + P(A) = 1$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 21

Elementary Probability in Pictures

• $P(B) = P(B \land A) + P(B \land \sim A)$

Copyright © 2001, Andrew W. Moore

Elementary Probability in Pictures

$$\sum_{j=1}^{k} P(A = v_j) = 1$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 23

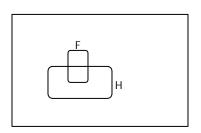
Elementary Probability in Pictures

$$P(B) = \sum_{j=1}^{k} P(B \wedge A = v_j)$$

Copyright © 2001, Andrew W. Moore

Conditional Probability

 P(A|B) = Fraction of worlds in which B is true that also have A true



H = "Have a headache" F = "Coming down with Flu"

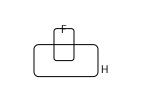
P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 25

Conditional Probability



H = "Have a headache" F = "Coming down with Flu"

P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2 P(H|F) = Fraction of flu-inflicted worlds in which you have a headache

= Area of "H and F" region
----Area of "F" region

= P(H ^ F) ------P(F)

Copyright © 2001, Andrew W. Moore

Definition of Conditional Probability

$$P(A|B) = P(A \land B)$$

$$P(B)$$

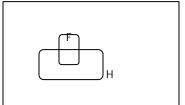
Corollary: The Chain Rule

$$P(A \land B) = P(A|B) P(B)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 27

Probabilistic Inference



H = "Have a headache" F = "Coming down with Flu"

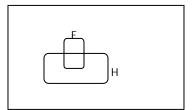
P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Copyright © 2001, Andrew W. Moore

Probabilistic Inference



H = "Have a headache" F = "Coming down with Flu"

P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

$$P(F \wedge H) = ...$$

$$P(F|H) = ...$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 29

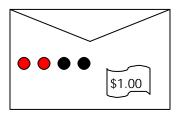
What we just did...

This is Bayes Rule

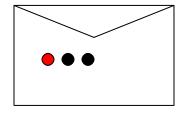
Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Copyright © 2001, Andrew W. Moore

Using Bayes Rule to Gamble



The "Win" envelope has a dollar and four beads in it



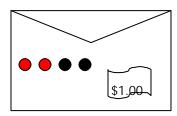
The "Lose" envelope has three beads and no money

Trivial question: someone draws an envelope at random and offers to sell it to you. How much should you pay?

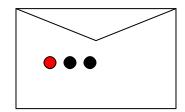
Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 31

Using Bayes Rule to Gamble



The "Win" envelope has a dollar and four beads in it



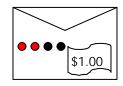
The "Lose" envelope has three beads and no money

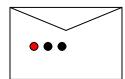
Interesting question: before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay? Suppose it's red: How much should you pay?

Copyright © 2001, Andrew W. Moore

Calculation...





Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 33

More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

Copyright © 2001, Andrew W. Moore

More General Forms of Bayes Rule

$$P(A=v_{i}|B) = \frac{P(B|A=v_{i})P(A=v_{i})}{\sum_{k=1}^{n_{A}} P(B|A=v_{k})P(A=v_{k})}$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 35

Useful Easy-to-prove facts

$$P(A | B) + P(\neg A | B) = 1$$

$$\sum_{k=1}^{n_A} P(A = v_k \mid B) = 1$$

Copyright © 2001, Andrew W. Moore

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

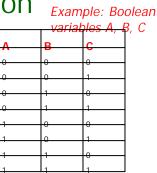
Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 37

The Joint Distribution

Recipe for making a joint distribution of M variables:

 Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).



Copyright © 2001, Andrew W. Moore

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.

variables A, b, c				
Α	В	С	Prob	
0	0	0	0.30	
0	0	1	0.05	
0	1	0	0.10	
0	1	1	0.05	
1	0	0	0.05	
1	0	1	0.10	
1	1	0	0.25	
1	1	1	0.10	

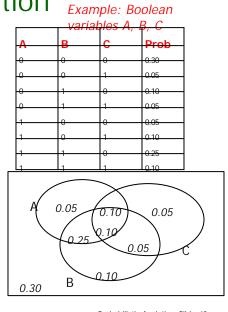
Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 39

The Joint Distribution

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.



Copyright © 2001, Andrew W. Moore



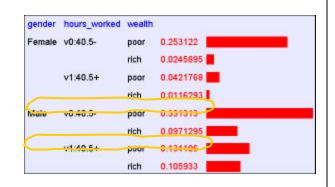
One you have the JD you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching}E} P(\text{row})$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 41

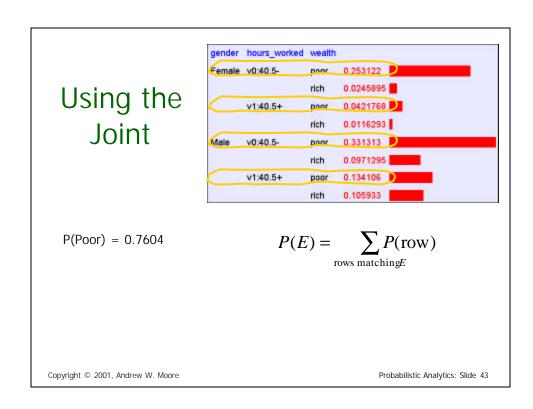
Using the Joint

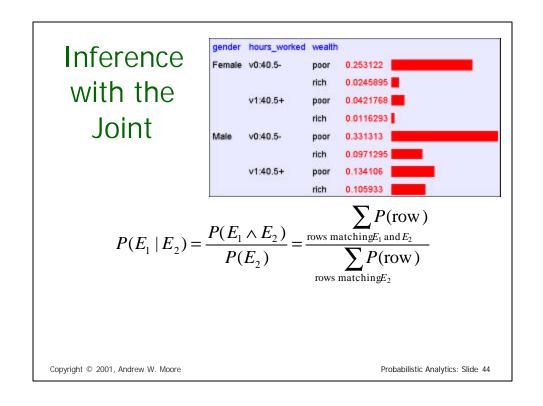


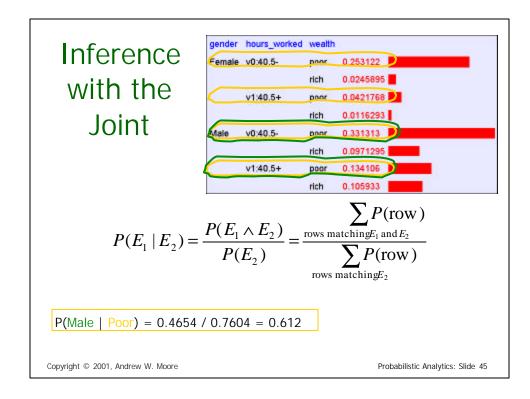
P(Poor Male) = 0.4654

$$P(E) = \sum_{\text{rows matching} E} P(\text{row})$$

Copyright © 2001, Andrew W. Moore







Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
 - I've got a sore neck: how likely am I to have meningitis?
 - I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?

Copyright © 2001, Andrew W. Moore

Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
 - I've got a sore neck: how likely am I to have meningitis?
 - I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 47

Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
 - I've got a sore neck: how likely am I to have meningitis?
 - I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?
- There's a thriving set of industries growing based around Bayesian Inference. Highlights are: Medicine, Pharma, Help Desk Support, Engine Fault Diagnosis

Copyright © 2001, Andrew W. Moore

Where do Joint Distributions come from?

- Idea One: Expert Humans
- Idea Two: Simpler probabilistic facts and some algebra

Example: Suppose you knew

$$\begin{array}{lll} P(A)=0.7 & P(C|A^AB)=0.1 \\ & P(C|A^AB)=0.8 & Then you can automatically \\ P(B|A)=0.2 & P(C|\sim A^AB)=0.3 & compute the JD using the \\ P(B|\sim A)=0.1 & P(C|\sim A^A\sim B)=0.1 & chain rule \end{array}$$

$$P(A=x \land B=y \land C=z) = P(C=z|A=x \land B=y) P(B=y|A=x) P(A=x)$$

In another lecture: Bayes Nets, a systematic way to do this.

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 49

Where do Joint Distributions come from?

Idea Three: Learn them from data!

Prepare to see one of the most impressive learning algorithms you'll come across in the entire course....

Copyright © 2001, Andrew W. Moore

Build a JD table for your attributes in which the probabilities are unspecified

Α	В	С	Prob
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

The fill in each row with

 $\hat{P}(\text{row}) = \frac{\text{records matching row}}{\text{total number of records}}$

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Fraction of all records in which A and B are True but C is False

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 51

Example of Learning a Joint

 This Joint was obtained by learning from three attributes in the UCI "Adult" Census

Census Database [Kohavi 1995]

gender hours_worked wealth Female v0:40.5poor 0.253122 0.0245895 rich. v1:40.5+ 0.0421768 poor 0.0116293 rich Male v0:40.5-0.331313 poor 0.0971295 v1:40.5+ 0.134106 poor 0.105933

Copyright © 2001, Andrew W. Moore

Where are we?

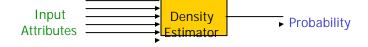
- We have recalled the fundamentals of probability
- We have become content with what JDs are and how to use them
- And we even know how to learn JDs from data.

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 53

Density Estimation

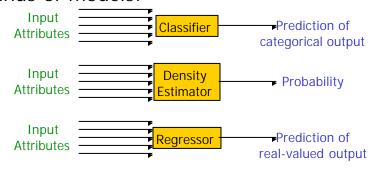
- Our Joint Distribution learner is our first example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a Probability



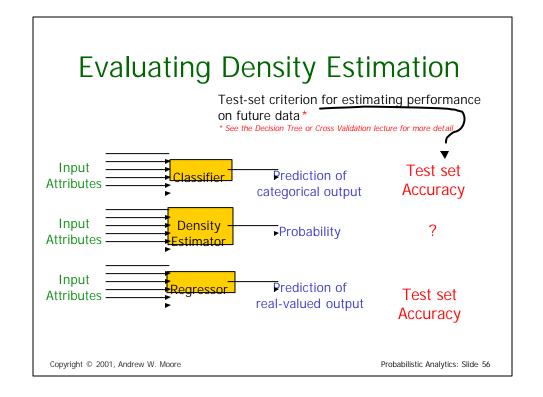
Copyright © 2001, Andrew W. Moore

Density Estimation

 Compare it against the two other major kinds of models:



Copyright © 2001, Andrew W. Moore



Evaluating a density estimator

• Given a record **x**, a density estimator *M* can tell you how likely the record is:

$$\hat{P}(\mathbf{x}/M)$$

 Given a dataset with R records, a density estimator can tell you how likely the dataset is:

(Under the assumption that all records were independently generated from the Density Estimator's JD)

$$\hat{P}(\text{dataset}/M) = \hat{P}(\mathbf{x}_1 \wedge \mathbf{x}_2 \dots \wedge \mathbf{x}_R/M) = \prod_{k=1}^R \hat{P}(\mathbf{x}_k/M)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 57

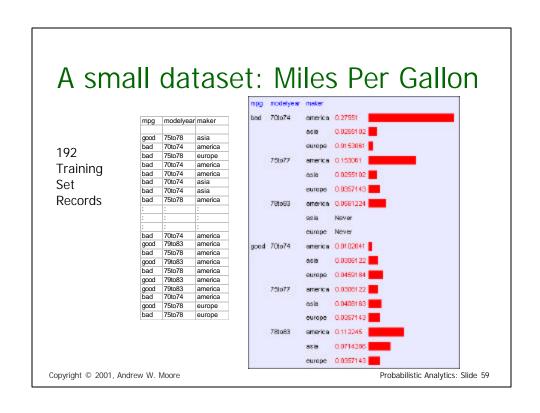
A small dataset: Miles Per Gallon

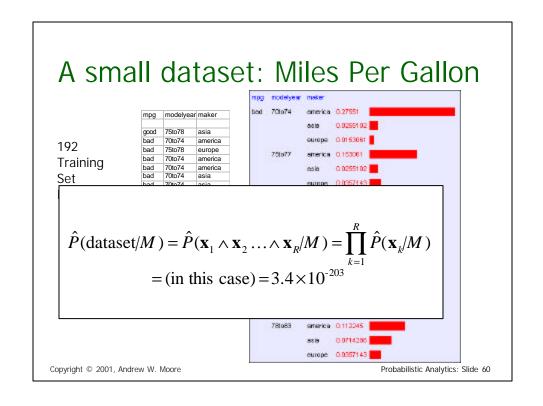
192 Training Set Records

mpg	modelyear	maker	
good	75to78	asia	
bad	70to74	america	
bad	75to78	europe	
bad	70to74	america	
bad	70to74	america	
bad	70to74	asia	
bad	70to74	asia	
bad	75to78	america	
:	:	:	
:		:	
:	:	:	
bad	70to74	america	
good	79to83	america	
bad	75to78	america	
good	79to83	america	
bad	75to78	america	
good	79to83	america	
good	79to83	america	
bad	70to74	america	
good	75to78	europe	
bad	75to78	europe	

From the UCI repository (thanks to Ross Quinlan)

Copyright © 2001, Andrew W. Moore



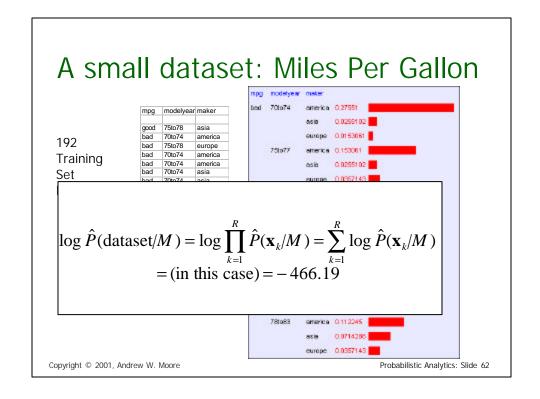


Log Probabilities

Since probabilities of datasets get so small we usually use log probabilities

$$\log \hat{P}(\text{dataset}/M) = \log \prod_{k=1}^{R} \hat{P}(\mathbf{x}_{k}/M) = \sum_{k=1}^{R} \log \hat{P}(\mathbf{x}_{k}/M)$$

Copyright © 2001, Andrew W. Moore



Summary: The Good News

- We have a way to learn a Density Estimator from data.
- Density estimators can do many good things...
 - Can sort the records by probability, and thus spot weird records (anomaly detection)
 - Can do inference: P(E1|E2)
 Automatic Doctor / Help Desk etc
 - Ingredient for Bayes Classifiers (see later)

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 63

Summary: The Bad News

 Density estimation by directly learning the joint is trivial, mindless and dangerous

Copyright © 2001, Andrew W. Moore

Using a test set

Set Size Log likelihood

Training Set 196 -466.1905

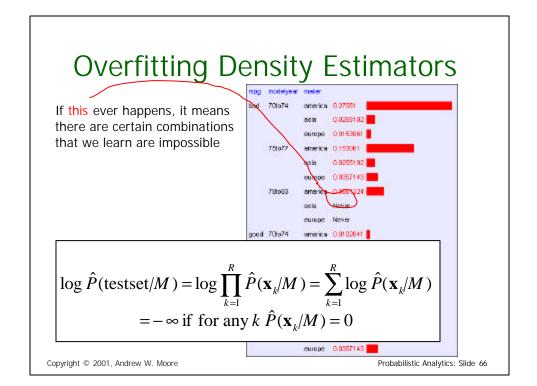
Test Set 196 -614.6157

An independent test set with 196 cars has a worse log likelihood

(actually it's a billion quintillion quintillion quintillion quintillion times less likely)

....Density estimators can overfit. And the full joint density estimator is the overfittiest of them all!

Copyright © 2001, Andrew W. Moore



Using a test set

Set Size Log likelihood

Training Set 196 -466.1905

Test Set 196 -614.6157

The only reason that our test set didn't score -infinity is that my code is hard-wired to always predict a probability of at least one in 10^{20}

We need Density Estimators that are less prone to overfitting

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 67

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.

Copyright © 2001, Andrew W. Moore

Independently Distributed Data

- Let x[i] denote the i'th field of record x.
- The independently distributed assumption says that for any $i, v, u_1 u_2 \dots u_{i+1} u_{i+1} \dots u_M$

$$P(x[i] = v \mid x[1] = u_1, x[2] = u_2, \dots x[i-1] = u_{i-1}, x[i+1] = u_{i+1}, \dots x[M] = u_M)$$
$$= P(x[i] = v)$$

- Or in other words, x[i] is independent of {x[1],x[2],..x[i-1], x[i+1],...x[M]}
- This is often written as

$$x[i] \perp \{x[1], x[2], \dots x[i-1], x[i+1], \dots x[M]\}$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 69

A note about independence

 Assume A and B are Boolean Random Variables. Then

"A and B are independent" if and only if

$$P(A|B) = P(A)$$

"A and B are independent" is often notated
 as
 A | B

Copyright © 2001, Andrew W. Moore

Independence Theorems

- Then P(A^B) =
- Assume P(A|B) = P(A) | Assume P(A|B) = P(A)
 - Then P(B|A) =

$$= P(A) P(B)$$

Copyright © 2001, Andrew W. Moore

$$= P(B)$$

Probabilistic Analytics: Slide 71

Independence Theorems

- Then $P(\sim A|B) =$
- Assume P(A|B) = P(A) Assume P(A|B) = P(A)
 - Then $P(A|\sim B) =$

$$= P(\sim A)$$

Copyright © 2001, Andrew W. Moore

$$= P(A)$$

Multivalued Independence

For multivalued Random Variables A and B,

$$A \perp B$$

if and only if

$$\forall u, v : P(A = u \mid B = v) = P(A = u)$$

from which you can then prove things like...

$$\forall u, v : P(A = u \land B = v) = P(A = u)P(B = v)$$
$$\forall u, v : P(B = v \mid A = v) = P(B = v)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 73

Back to Naïve Density Estimation

- Let x[i] denote the i'th field of record x:
- Naïve DE assumes x[i] is independent of $\{x[1],x[2],..x[i-1], x[i+1],...x[M]\}$
- Example:
 - Suppose that each record is generated by randomly shaking a green dice and a red dice
 - Dataset 1: A = red value, B = green value
 - Dataset 2: A = red value, B = sum of values
 - Dataset 3: A = sum of values, B = difference of values
 - · Which of these datasets violates the naïve assumption?

Copyright © 2001, Andrew W. Moore

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is P(A^~B^C^~D)?

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 75

Using the Naive Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is P(A^~B^C^~D)?
- $= P(A|\sim B^C^\sim D) P(\sim B^C^\sim D)$
- $= P(A) P(\sim B^{C} \sim D)$
- = $P(A) P(\sim B|C^{\wedge}\sim D) P(C^{\wedge}\sim D)$
- $= P(A) P(\sim B) P(C^{\sim} D)$
- $= P(A) P(\sim B) P(C \mid \sim D) P(\sim D)$
- $= P(A) P(\sim B) P(C) P(\sim D)$

Copyright © 2001, Andrew W. Moore

Naïve Distribution General Case

• Suppose x[1], x[2], ... x[M] are independently distributed.

$$P(x[1] = u_1, x[2] = u_2, \dots x[M] = u_M) = \prod_{k=1}^{M} P(x[k] = u_k)$$

- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.
- So we can do any inference
- But how do we learn a Naïve Density Estimator?

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 77

Learning a Naïve Density Estimator

$$\hat{P}(x[i] = u) = \frac{\text{\#records in which } x[i] = u}{\text{total number of records}}$$

Another trivial learning algorithm!

Copyright © 2001, Andrew W. Moore

Contrast

Joint DE	Naïve DE
Can model anything	Can model only very boring distributions
No problem to model "C is a noisy copy of A"	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 79

Empirical Results: "Hopeless"

The "hopeless" dataset consists of 40,000 records and 21 Boolean attributes called a,b,c, ... u. Each attribute in each record is generated 50-50 randomly as 0 or 1.

Name Model Parameters LogLike

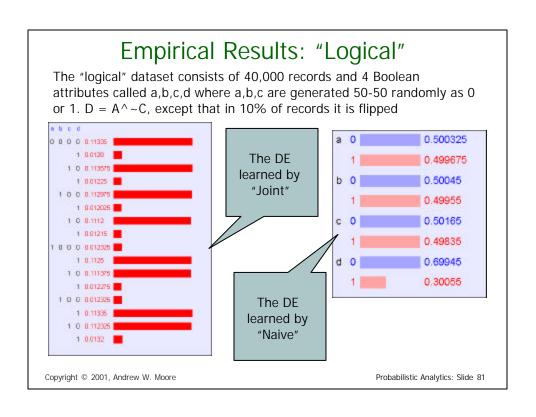
Model1 joint submodel=gauss -272625 +/- 301.109 p
1

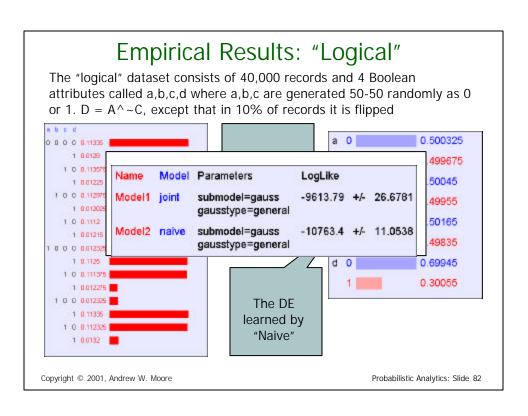
Model2 naive submodel=gauss gausstype=general -58225.6 +/- 0.554747 gausstype=general

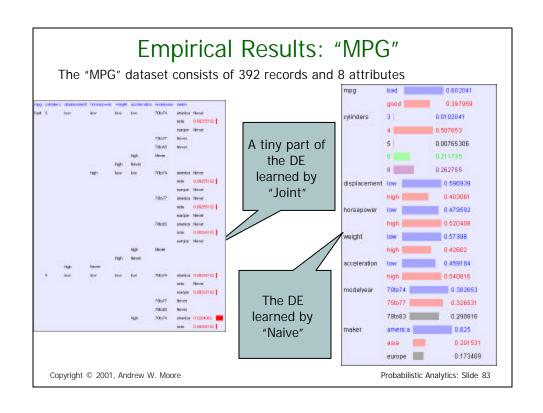
Average test set log probability during 10 folds of k-fold cross-validation*

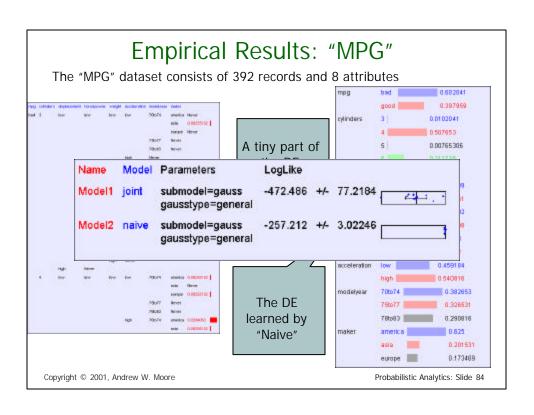
Despite the vast amount of data, "Joint" overfits hopelessly and does much worse

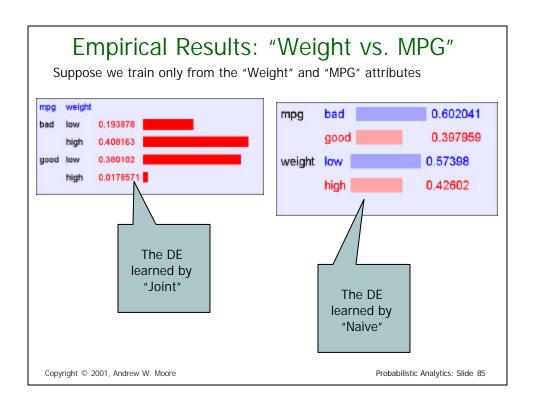
Copyright © 2001, Andrew W. Moore

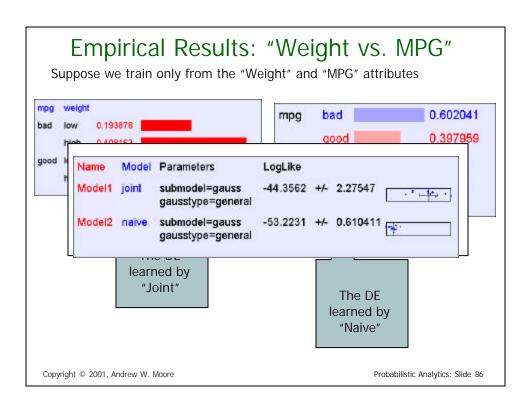


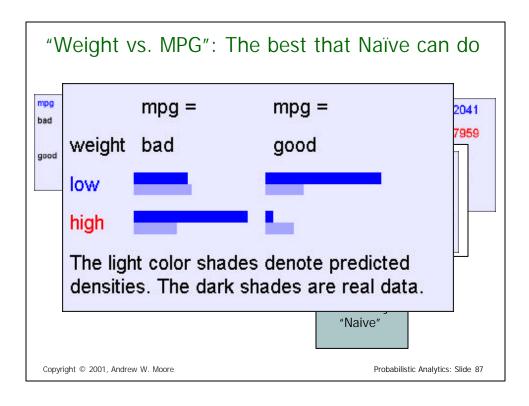












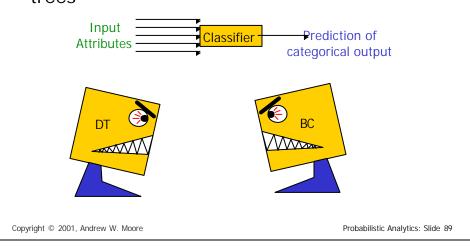
Reminder: The Good News

- We have two ways to learn a Density Estimator from data.
- *In other lectures we'll see vastly more impressive Density Estimators (Mixture Models, Bayesian Networks, Density Trees, Kernel Densities and many more)
- Density estimators can do many good things...
 - Anomaly detection
 - Can do inference: P(E1|E2) Automatic Doctor / Help Desk etc
 - Ingredient for Bayes Classifiers

Copyright © 2001, Andrew W. Moore

Bayes Classifiers

A formidable and sworn enemy of decision trees



How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values $v_1, v_2, \dots v_{n_Y}$
- Assume there are m input attributes called $X_1, X_2, ... X_m$
- Break dataset into n_Y smaller datasets called DS_{11} DS_{21} ... DS_{nV}
- Define DS_i = Records in which $Y = v_i$
- For each DS_i, learn Density Estimator M_i to model the input distribution among the Y=v_i records.

Copyright © 2001, Andrew W. Moore

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values $v_1, v_2, \dots v_{n_Y}$
- Assume there are m input attributes called X₁, X₂, ... X_m
- Break dataset into n_Y smaller datasets called DS_{11} DS_{21} ... DS_{nY}
- Define DS_i = Records in which $Y = V_i$
- For each DS_i, learn Density Estimator M_i to model the input distribution among the Y=v_i records.
- M_i estimates $P(X_1, X_2, ... X_m \mid Y=v_i)$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 91

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values v_{1i} v_{2i} ... v_{ny}
- Assume there are m input attributes called X_{11} X_{21} ... X_{m}
- Break dataset into n_Y smaller datasets called DS_{11} DS_{21} ... DS_{nY}
- Define DS_i = Records in which $Y = V_i$
- For each DS_i, learn Density Estimator M_i to model the input distribution among the Y=v_i records.
- M_i estimates P(X₁, X₂, ... X_m | Y=v_i)
- Idea: When a new set of input values (X₁ = u₁, X₂ = u₂, X_m = u_m) come along to be evaluated predict the value of Y that makes P(X₁, X₂, ... X_m / Y=v_i) most likely

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)$$

Is this a good idea?

Copyright © 2001, Andrew W. Moore

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values V_{11} , V_{21} ... V_{ny} .
- Assume there are *m* input attribution classifier.
- Break dataset into n_{γ} smaller dat
- Define DS_i = Records in which Y
- For each DS_i , learn Density Estir very unlikely distribution among the $Y=v_i$ reco
- M_i estimates $P(X_1, X_2, ..., X_m \mid Y=v_i)$
- Idea: When a new set of input values $(X_1 = u_1, X_2 = u_2, ..., X_m = u_m)$ come along to be evaluated predict the value of Y that makes $P(X_1, X_2, ..., X_m \mid Y = v_i)$ most likely

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)$$

Is this a good idea?

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 93

Much Better Idea

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values $v_1, v_2, \dots v_{ny}$.
- Assume there are m input attributes called
- Break dataset into n_y smaller datasets call
- Define DS_i = Records in which $Y = v_i$
- For each DS_i , learn Density Estimator M_i distribution among the $Y=v_i$ records.
- M_i estimates $P(X_1, X_2, ... X_m \mid Y=v_i)$
- Idea: When a new set of input value $(X_1 = u_1, X_2 = u_2, X_m = u_m)$ come along to be evaluated predict the value of Y that makes $P(Y=v_1 \mid X_1, X_2, ... X_m)$ most likely

$$Y^{\text{predict}} = \underset{\dots}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

Is this a good idea?

Copyright © 2001, Andrew W. Moore

Terminology

• MLE (Maximum Likelihood Estimator):

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)$$

• MAP (Maximum A-Posteriori Estimator):

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 95

Getting what we need

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

Copyright © 2001, Andrew W. Moore

Getting a posterior probability

$$P(Y = v \mid X_{1} = u_{1} \cdots X_{m} = u_{m})$$

$$= \frac{P(X_{1} = u_{1} \cdots X_{m} = u_{m} \mid Y = v)P(Y = v)}{P(X_{1} = u_{1} \cdots X_{m} = u_{m})}$$

$$= \frac{P(X_{1} = u_{1} \cdots X_{m} = u_{m} \mid Y = v)P(Y = v)}{\sum_{j=1}^{n_{Y}} P(X_{1} = u_{1} \cdots X_{m} = u_{m} \mid Y = v_{j})P(Y = v_{j})}$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 97

Bayes Classifiers in a nutshell

- 1. Learn the distribution over inputs for each value Y.
- 2. This gives $P(X_1, X_2, ... X_m \mid Y=v_i)$.
- 3. Estimate $P(Y=v_i)$. as fraction of records with $Y=v_i$.
- 4. For a new prediction:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

=
$$\underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

Copyright © 2001, Andrew W. Moore

Bayes Classifiers in a nutshell

- 1. Learn the distribution over inputs for each value Y.
- 2. This gives $P(X_1, X_2, ... X_m \mid Y=v_i)$.
- 3. Estimate $P(Y=v_i)$ as fraction of records w
- 4. For a new prediction:

 $Y^{\text{predict}} = \operatorname{argmax} P(Y = v \mid X_1 = \text{Right now we have two})$ $= \operatorname{argmax} P(X_1 = u_1 \cdots X_m = u_m)$

We can use our favorite Density Estimator here.

- Joint Density Estimator
- Naïve Density Estimator

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 99

Joint Density Bayes Classifier

$$Y^{\text{predict}} = \operatorname{argmax} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)$$

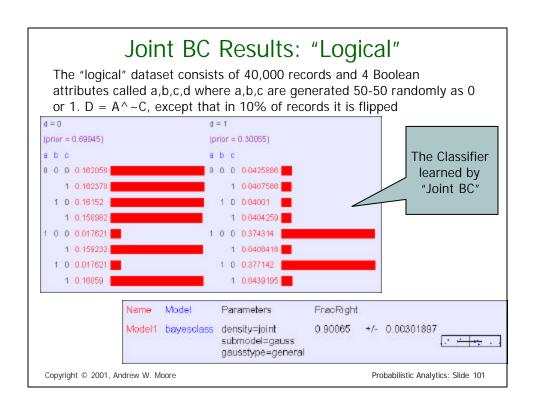
In the case of the joint Bayes Classifier this degenerates to a very simple rule:

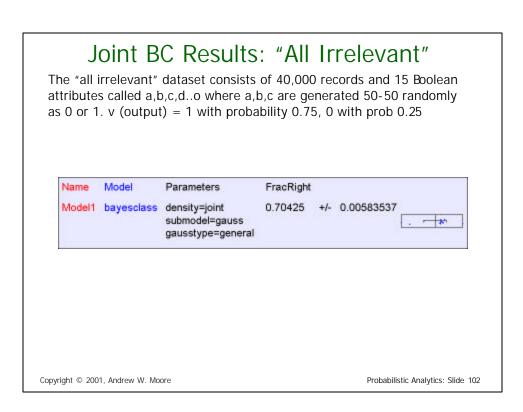
 $Y^{predict}$ = the most common value of Y among records in which $X_1 = u_1, X_2 = u_2, ..., X_m = u_m$

Note that if no records have the exact set of inputs X_1 $= u_1, X_2 = u_2, ..., X_m = u_m$ then $P(X_1, X_2, ..., X_m / Y = v_i)$ = 0 for all values of Y.

In that case we just have to guess Y's value

Copyright © 2001, Andrew W. Moore





Naïve Bayes Classifier

$$Y^{\text{predict}} = \operatorname{argmax} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)$$

In the case of the naive Bayes Classifier this can be simplified:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v) \prod_{j=1}^{n_{Y}} P(X_{j} = u_{j} \mid Y = v)$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 103

Naïve Bayes Classifier

$$Y^{\text{predict}} = \operatorname{argmax} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)$$

In the case of the naive Bayes Classifier this can be simplified:

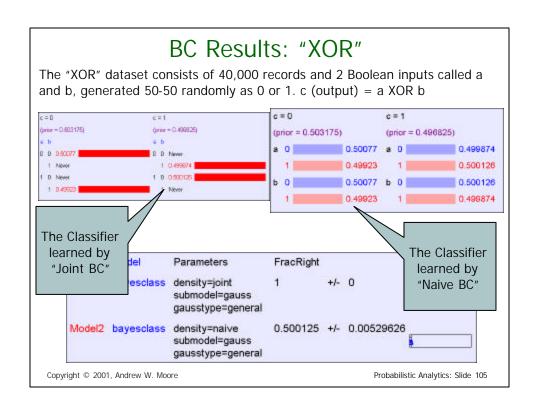
$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v) \prod_{j=1}^{n_{Y}} P(X_{j} = u_{j} \mid Y = v)$$

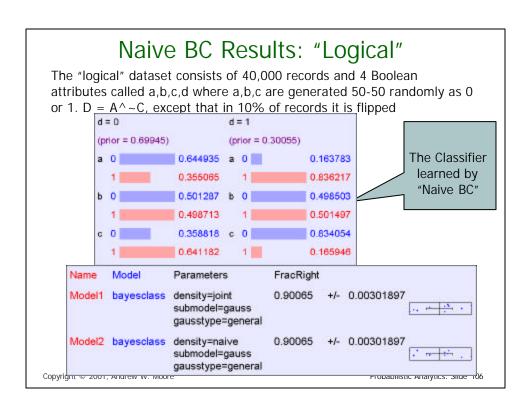
Technical Hint:

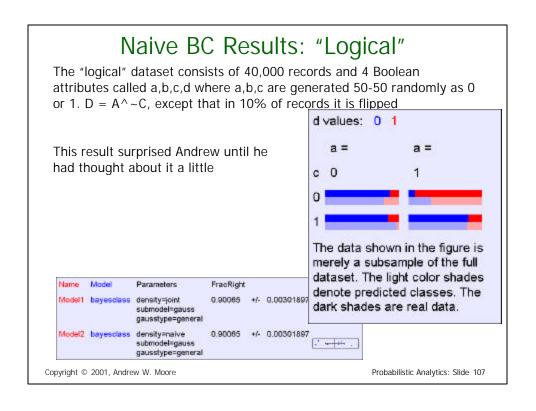
If you have 10,000 input attributes that product will underflow in floating point math. You should use logs:

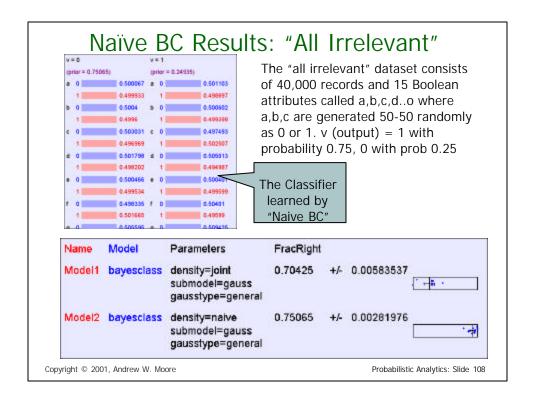
$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} \left(\log P(Y = v) + \sum_{j=1}^{n_{Y}} \log P(X_{j} = u_{j} \mid Y = v) \right)$$

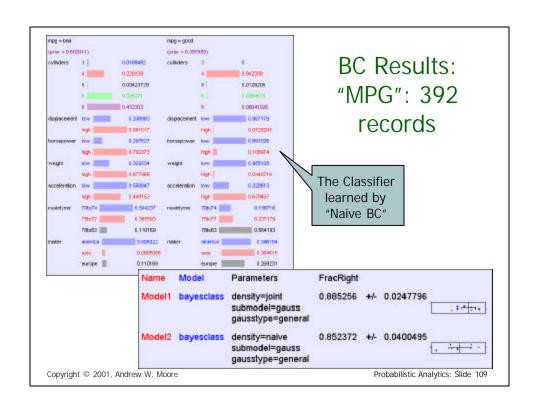
Copyright © 2001, Andrew W. Moore

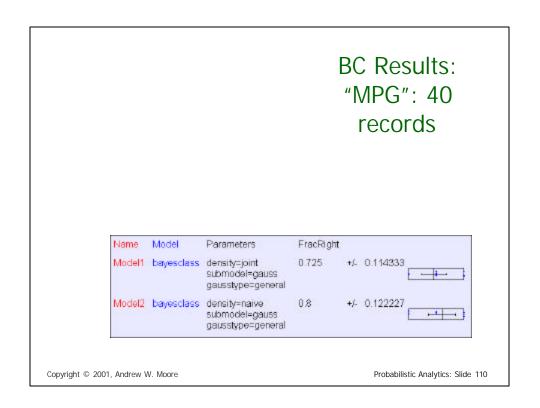












More Facts About Bayes Classifiers

- Many other density estimators can be slotted in*.
- Density estimation can be performed with real-valued inputs*
- Bayes Classifiers can be built with real-valued inputs*
- Rather Technical Complaint: Bayes Classifiers don't try to be maximally discriminative---they merely try to honestly model what's going on*
- Zero probabilities are painful for Joint and Naïve. A hack (justifiable with the magic words "Dirichlet Prior") can help*.
- Naïve Bayes is wonderfully cheap. And survives 10,000 attributes cheerfully!

Copyright © 2001, Andrew W. Moore

*See future Andrew Lectures
Probabilistic Analytics: Slide 111

What you should know

- Probability
 - Fundamentals of Probability and Bayes Rule
 - What's a Joint Distribution
 - How to do inference (i.e. P(E1|E2)) once you have a JD
- Density Estimation
 - What is DE and what is it good for
 - How to learn a Joint DE
 - How to learn a naïve DE

Copyright © 2001, Andrew W. Moore

What you should know

- Bayes Classifiers
 - How to build one
 - · How to predict with a BC
 - Contrast between naïve and joint BCs

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 113

Interesting Questions

- Suppose you were evaluating NaiveBC, JointBC, and Decision Trees
 - Invent a problem where only NaiveBC would do well
 - Invent a problem where only Dtree would do well
 - Invent a problem where only JointBC would do well
 - Invent a problem where only NaiveBC would do poorly
 - Invent a problem where only Dtree would do poorly
 - Invent a problem where only JointBC would do poorly

Copyright © 2001, Andrew W. Moore