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p● Metric space (M,d):  a set of points M, 

a distance function d over M

● Pre-process a given subset S of M, |S| = n

● Given a query point q in M, quickly return 
a point p in S minimizing d(q,p).

● Linear scan: n queries (no preprocessing), 
space O(n)

Nearest Neighbor Search

     A basic computational primitive used in solving a large class of proximity problems: 
minimum spanning tree, diameter, closest pair, spread, facility location, reverse 
nearest neighbor, range queries (intersection of S with a query object), etc



  

● k-nearest neighbor classification and regression

Applications in Learning

● Classification: An object is assigned to the class most common 
among its k nearest neighbors (majority in binary classification)

● Regression: An object is assigned the average of the values of its 
k nearest neighbors (can be weighted by the distance).

● Lazy learning



  

Diabetes classification

The classes overlap, so we get lots of isolated regions where the predicted class 
changes. To get a smoother boundary, use a larger k.

k=13k=1

How to choose the best k?
Use cross-validation



  

● We need a way to measure distances between the query and database 
objects.  The algorithm is very sensitive to the local structure of the data

– Examples of metrics: Euclidean distances, edit distance for strings, Hausdorff 
matching for edge images, the Kullback-Leibler distance and the Earth 
Mover's Distance for probability distributions

– When features have different scales, it's a good idea to standardize them first 
so that they have standard deviation 1 (by dividing each feature value by its 
standard deviation on the training set).

– Distance metric learning: Learn the metric to optimize classification 
accuracy!

● Problem: efficiency
– Nearest neighbor search data structures (this lecture)

– Prune away some of the examples. The algorithm is largely unaffected by 
removing examples. Only the boundary examples are important.

K-Nearest Neighbor Algorithm



  

● Provides no concise model of the dataset

● Very robust to noise in the dataset (unlike many other methods, 
which can change substantially from the alteration of a single 
training example.)

● Very sensitive to irrelevant features, and doesn't perform well 
when some features are more important than others (the opposite of 
logistic regression and classification trees.  This problem can be fixed by 
designing your own distance measure or doing feature selection before 
running the algorithm.)

● Nearest-neighbor is especially useful for domains where a 
distance measure between examples is straightforward to define 
but a model relating the features to the response is not.

Properties of the K-Nearest Neighbor Algorithm



  

Nonlinear Dimensionality Reduction

Isomap, locally linear embeddings, maximum variance unfolding
Isomap: 1) Construct neighborhood graph, 2) compute shortest paths, 3) compute d-

dimensional embedding (using eigen-information)



  

Other Applications

● Probably more applications than any other geometric problem

● Clustering (e.g, k-means)
● Information retrieval, data mining

– Similarity search, content-based retrieval, near-duplicate detection, 
recommendation systems, problem diagnosis, etc.

● Compression, vector quantization



  

General case is hard, even for 
approximate queries

Example:  A near-uniform S with

d(x,y) ≈ 1 for all x, y in S.

Query complexity: Ω(n)

But many data sets don't have large uniform subsets.
How do we quantify this?

q
p

return p with d(p,q) ≤ (1+ε)d(q,S)



  

● Low-dimensional (<20-30 depending on n):

– kd-trees (Bentley, 1975, >1300 citations); not the most efficient in 
theory, but works well in practice

● Exact algorithms (curse of dimensionality):

– time or space exponential in the dimension (seems unavoidable); 
O(dO(1)logn) query time, but nO(d) space.

● Approximate (randomized) search:

– both space and time polynomial in the dimension:
● Dimensionality reduction (Johnson-Lindenstrauss-type projections: n points in 

Euclidean space can be projected down to O(ε-2 logn) dimensions with distortion at 

most ε); space is an issue nO(ε-2) (Kushilevitz-Ostrovsky-Rabani 1998, etc)

● Locality Sensitive Hashing (Indyk-Motwani 1998, etc)

Special case: Euclidean spaces (l2)



  

● Not all metrics of interest are Euclidean/normed.  
– Problem-specific distances (between time series, sequences, images, 

etc), on-demand measurements, functions learned via optimization

● Most methods developed for the Euclidean space don't 
apply to non-vector spaces

● Low-distortion embeddings: Embed your metric into a 
normed metric and solve the problem there:

– Embedding introduces additional distortion and complexity

– Works (well) only for very specific metrics (may not work for 
yours):  l-infinity (max), Hausdorff metric (max-min between sets), Earth-
Mover (min matching between sets), string/block edit distance

Un-normed metrics



  

● The “real” dimension of the data is typically low
● We want complexity to depend on the intrinsic 

dimension rather than on the explicit dimension
● The distance function is used only as a black box 

(no manipulation of coordinates).  Pruning relies 
only on metric inequalities.

● How to quantify the real dimension?
● How to exploit it?

Metrics with low intrinsic dimension



  

Notions of Intrinsic Dimension: Bounded Growth

Ball of radius r around p:

Expansion constant = smallest c such that 

Expansion dimension = log c

For the uniform metric, c = O(n) 

rr
p

If S is arranged uniformly on some 
surface of dimension d, c ≈ 2d

(aka Federer measure)



  

Cover Trees

Sham Kakade 
(TTI-Chicago)

John Langford 
(Yahoo! Research)

Joint work with

 A simple, deterministic data structure for exact and approximate NNS
 Linear space, independent of any notion of dimensionality
 Query time:  
 Dynamic (insert/remove):   
 The algorithm does not need to know c
 Works well in practice
 Supports range queries, k-NNS; batch and lazy construction, batch 

queries



  

What is a Cover Tree? (slide 1 of 3)

Nesting invariant :   For all

points in S



  

Covering:
Every node in              is within         from some node 
in          ; one such node is chosen as parent   

Navigating nets [Krauthgamer-Lee'04]: a node is connected to all possible parents; 
cover trees preserve the runtime properties while throwing away most links.



  

Separation:

All nodes in          are at least         apart



  

Search: query point q 
    Start with an upper bound = distance to root node

q 



  

    

Descend maintaining a cover set = set of  nodes that 
may contain the nearest neighbor of  q 

Pruning:  A node in level  i  is at most                 

away from any of  its descendants

Search: query point q 

q 



  

    

Descend maintaining a cover set  Qi = set of  nodes 

that may contain the nearest neighbor of  q

Search: query point q 

q



  

    

Search: query point q 

q

Descend maintaining a cover set = set of  nodes that 
may contain the nearest neighbor of  q 



  

    

Search: query point q 

q

Descend maintaining a cover set = set of  nodes that 
may contain the nearest neighbor of  q 



  

    
Given a query q, return a point p in S with

Approximate Search

Modification of  the algorithm:  Stop as soon as

(*)

Combining with (*) gives

Proof:   Suppose we terminated at level i.  Then

(**)

Combining with (**) proves the claim.



  

Proof:  Suppose p has two parents, q 

and q'. They cannot be parents of  p at 

the same level (by construction).  Let 

q' be the parent at the lower level j. 

But p is also at level j (nesting 

invariant), thus d(p,q') > 2 
j, a 

contradiction.                      

Claim:  Every point has at most one parent other than itself.

There are no chains, so there are at most O(n) links.

q

q'

p

Space Bound

j



  

Query Time Analysis: Basic Lemmas

Width bound: Any node p has at most c4 children.

Depth bound:  The maximum depth of  
                any point is 

Query time:  If                   has expansion constant 
c, the NN of p can be found in time 



  

(over optimized brute force )

Comparison with sb(S).
Euclidean norm, 1,2-nearest neighbor

Diabetes 
dataset

Handwritten 
digits



  

Does c capture the complexity of NNS?

A few outliersBad average 
case expansion



  

Metric repair: 
My distance function is not a metric

Symmetry: d(p,q) = d(q,p)

– d'(p,q) = [d(p,q)+d(q,p)] / 2

Triangle inequality: d(p,q) ≤ d(p,r) + d(r,q)

– Any relaxation works: d(p,q) ≤ C(d(p,r) + d(r,q)) for some 
C>1; deal with the outliers if it holds for most triples.  

– Use d'(p,q) = d(p,q)w for some sufficiently small w.  If the 
smallest w is 0 (or C ~ ∞), uniform metric (bad).

– Use the shortest path (graph) metric: d'(p,q) = inf ∑ i d(xi,xi+1), 
where the inf is over all sequences p = x1, x2, ..., xN = q.



  

Final comments
● Other algorithms/packages:

– Locality-Sensitive Hashing (LSH), Indyk and Andoni (MIT)
– ANN (Arya and Mount), Clarkson's sb(S)
– Metric and ball trees

● Excellent surveys by

– Piotr Indyk (MIT)
– Ken Clarkson (IBM Almaden)


