COMS-4771

Mearest Meighbor Methods in

Learnin:,

April 3, 2008

Mearest A)eighbowf Seavrch .

L]

e Y ’ ’ :
' e
* Metric space (M,d): a set of points M, «.p J bt ,‘-
.
a distance function d over M 0 T TC I Y
* Pre-process a given subset S of M, |S| =n T T
: : : : ' . - RN
* Given a query point q in M, quickly return . v, 2
a point p in S minimizing d(q,p). ’ ¥
: & ’l. . ’
* Linear scan: n queries (no preprocessing), , w* '

space O(n) .

A basic computational primitive used in solving a large class of proximity problems:

minimum spanning tree, diameter, closest pair, spread, facility location, reverse
nearest neighbor, range queries (intersection of S with a query object), etc

Applications in Learming

* k-nearest neighbor classification and regression

Database (60,000 images)

hearest
neighbor

* (Classification: An object is assigned to the class most common
among its k nearest neighbors (majority in binary classification)

* Regression: An object is assigned the average of the values of its
k nearest neighbors (can be weighted by the distance).

* Lazy learning

ped

Diabetes classification

15

1.0

S0 S0 100 120 140 1600 1300 200 &0 50 100 120 140 160 180 200
k=1 QiU k=13 g|u

The classes overlap, so we get lots of isolated regions where the predicted class
changes. To get a smoother boundary, use a larger k.

How to choose the best k?

—
L

misclass

Use cross-validation

o0

K-Mearest A)eighbof Algofi‘}‘hw

* We need a way to measure distances between the query and database
objects. The algorithm is very sensitive to the local structure of the data

— Examples of metrics: Euclidean distances, edit distance for strings, Hausdorff
matching for edge images, the Kullback-Leibler distance and the Earth
Mover's Distance for probability distributions

— When features have different scales, it's a good idea to standardize them first
so that they have standard deviation 1 (by dividing each feature value by its
standard deviation on the training set).

— Distance metric learning: Learn the metric to optimize classification
accuracy!

* Problem: efficiency

— Nearest neighbor search data structures (this lecture)

— Prune away some of the examples. The algorithm is largely unaffected by
removing examples. Only the boundary examples are important.

Properties of the K-Alearest Aeighbor Algorithw

Provides no concise model of the dataset

Very robust to noise in the dataset (unlike many other methods,
which can change substantially from the alteration of a single
training example.)

Very sensitive to irrelevant features, and doesn't perform well

when some features are more important than others (the opposite of
logistic regression and classification trees. This problem can be fixed by
designing your own distance measure or doing feature selection before
running the algorithm.)

Nearest-neighbor is especially useful for domains where a
distance measure between examples is straightforward to define
but a model relating the features to the response is not.

Monlinear Diwensionali+y Keduction

Ed -

Fig. 3. The "Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K = 7 and N =

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

Isomap, locally linear embeddings, maximum variance unfolding
Isomap: 1) Construct neighborhood graph, 2) compute shortest paths, 3) compute d-
dimensional embedding (using eigen-information)

Other Applications

* (lustering (e.g, k-means)

* Information retrieval, data mining

— Similarity search, content-based retrieval, near-duplicate detection,
recommendation systems, problem diagnosis, etc.

* Compression, vector quantization

* Probably more applications than any other geometric problem

Geneval case is hard, even {or
approxiwate gueries

return p with d(p,q) < (1+¢)d(q,S)

But many data sets don't have large uniform subsets.

How do we quantify this?

Special case: Euclidean spaces (1)

* Low-dimensional (<20-30 depending on n):

— kd-trees (Bentley, 1975, >1300 citations); not the most efficient in
theory, but works well in practice

* Exact algorithms (curse of dimensionality):
— time or space exponential in the dimension (seems unavoidable);
O(d®Mlogn) query time, but n©(d) space.

* Approximate (randomized) search:

— both space and time polynomial in the dimension:

* Dimensionality reduction (Johnson-Lindenstrauss-type projections: n points in
Euclidean space can be projected down to O(e2 logn) dimensions with distortion at

-2
most €); space is an issue nO") (Kushilevitz-Ostrovsky-Rabani 1998, etc)

* Locality Sensitive Hashing (Indyk-Motwani 1998, etc)

Un—-norwed wetrics

Not all metrics of interest are Euclidean/normed.

— Problem-specific distances (between time series, sequences, images,
etc), on-demand measurements, functions learned via optimization

Most methods developed for the Euclidean space don't
apply to non-vector spaces

Low-distortion embeddings: Embed your metric into a
normed metric and solve the problem there:

- Embedding introduces additional distortion and complexity

- Works (well) only for very specific metrics (may not work for

yours): l-infinity (max), Hausdorff metric (max-min between sets), Earth-
Mover (min matching between sets), string/block edit distance

Metvics with Jow intrinsic diwension

The “real” dimension of the data is typically low

We want complexity to depend on the intrinsic
dimension rather than on the explicit dimension

The distance function is used only as a black box
(no manipulation of coordinates). Pruning relies
only on metric inequalities.

How to quantify the real dimension?

How to exploit it?

Motions o€ mtvrinsic Diwension: Bounded Growth

Ball of radius r around p:

B.(p) ={qeS:d(g,p) <r}

Expansion constant = smallest ¢ such that

Forallpe S,7> 0, |Ba:(p)| <c|B-(p)

If S is arranged uniformly on some

EXPanS]'On dlmenSIOn =]'Og C surface of dimension d, C= Zd

For the uniform metric, ¢ = O(n)

(aka Federer measure)

Cover Tv're,e.s

A simple, deterministic data structure for exact and approximate NNS
Linear space, independent of any notion of dimensionality

Query time: min{O(c’® Inn), O(n)}

Dynamic (insert/remove): min{O(c“") Inn), O(n)}

The algorithm does not need to know c

Works well in practice
Supports range queries, k-NNS; batch and lazy construction, batch
queries

Joint work with

Sham Kakade John Langford
(TTI-Chicago) (Yahoo! Research)

What is a Cover Tree” (slide / of 3)

Nesting invariant: Forall :, C; C C;_4

points in S

Covering:

Every node in C;_1 is within 2° from some node
in (; ;onesuch node is chosen as parent

Ciy ©@ o
) O

A

Navigating nets [Krauthgamer-Lee'04]: a node is connected to all possible parents;

cover trees preserve the runtime properties while throwing away most links.

Separation:
Allnodes in (; are atleast 2! apart

Search: query poi nt g

Start with an upper bound = distance to root node

Search: query point g

Descend maintaining a cover set = set of nodes that
may contain the nearest neighbor of g

Pruning: A nodein level I is at most

away from any of its descendants

Search: query poi nt g

Descend maintaining a cover set Q. = set of nodes
that may contain the nearest neighbor of g

Q;_1 = {p € CHILDREN(Q;) :
d(q,p) < d(q, Children(Q;)) + 2}

Search: query point g

Descend maintaining a cover set = set of nodes that
may contain the nearest neighbor of g

Search: query poi nt g

Descend maintaining a cover set = set of nodes that
may contain the nearest neighbor of g

Approximate Search

Given a query q, return a point p in S with

d(q,p) < (14 ¢€)d(q,S)

Modification of the algorithm: Stop as soon as

2tL(14+1/e) <d(q,Q;))

Proof: Suppose we terminated at level ;. Then

d(q,Q;) < d(q,S) + 2" (**)
Combining with (*) gives

2Tl < ed(q, S)

Combining with (**) proves the claim.

Space Bound

Claim: Every point has at most one parent other than itself.

Proof: Suppose p has two parents, q

D/‘ and q. They cannot be parents of p at
0

p
o the same level (by construction). Let

. N /////////%//7%& q' be the parent at the lower level .

-
./T | But p is also at level j (nesting

invariant), thus d(p,q) > 29, a

contradiction.

There are no chains, so there are at most O(n) links.

G?ue,r)/ Tiwe Analysis: Basic Lewwas

Depth bound: The maximum depth of
any point 1s O(cg logn)

\ Query time: If S U {p} has expansion constant
¢, the NN of p can be found in time O(c 2 log n)
\

1,10-Nearest Neighbor Speedup

Comparison with sb(S).

Euclidean norm, 1,”7-nearest neighbor

LiLy lyssss LLLI LY L F 1|
o o ~—
o ~—
—
o
T T T T T (D]
— 1SIULL - £
o - (5]
................... 1sa'Ayd W m.o
............................... adfnoo ..m =
.......... urestolq =
.......... 1s9'01q m
.................. uestiyd
= sabewn
........ |2400
........ lana)

(over optimized brute force)

—d umrethdo

uetuad

4 1sahdo
1sa'uad
—_— Ul
— puud -
—=d ssp|b

Diabetes
dataset

—{ = LIl AN

==

1000

— Bdng
o

100

dnpaads

1siuw
adA1n00
191 Auyd
uleJ} oiq
1s8} 0Iq
ures; Ayd
[8100
SEINE]
ureJ; 1do
ureJ; uad
1so] 1do
1s9] uad
uol

ewid
sse|b
auIM
ednq

Sul

Does ¢ capture the cowplexity of ANST

expansion constant ¢

5000

4000

3000

2000

1000

Expansion constant over 5000 datapoints

0 1000 2000 3000 4000 5000
number of points with expansion at most ¢

Metvic repaw:

My distance function is not a wetric

Symmetry: d(p,q) = d(q.p)
- d'(p,q) = [d(p,q)+d(q,p)] / 2
Triangle inequality: d(p,q) < d(p,r) + d(r,q)

— Any relaxation works: d(p,q) < C(d(p,r) + d(r,q)) for some
C>1; deal with the outliers if it holds for most triples.

- Use d'(p,q) = d(p,q)W for some sufficiently small w. If the
smallest w is 0 (or C ™ o), uniform metric (bad).

— Use the shortest path (graph) metric: d'(p,q) = inf)} ; d(x;,x.,),

where the inf is over all sequences p = x;, x,, ..., Xy = Q.

Final comments

* Other algorithms/packages:

— Locality-Sensitive Hashing (LSH), Indyk and Andoni (MIT)
— ANN (Arya and Mount), Clarkson's sb(S)
— Metric and ball trees
* Excellent surveys by
— Piotr Indyk (MIT)
— Ken Clarkson (IBM Almaden)

