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How do we learn the parameters of the grass predi
tor?
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Subproblem Learning is PowerfulTheorem: Assuming AES en
ryption is unbreakable, there ex-ists learning problems D for whi
h dire
t learning of subproblems

D1, ..., Dm is tra
table, yet learning without subproblems is 
om-putationally intra
table.In other words: learning the full problem 
an be hard, but if youknow the right subproblems to solve, it 
an be
ome easy.



Proof: Let D be a distribution on x = AES en
rypted IMs and

y = plain text IMs.

1. y is essentially unpredi
table given x.

2. But AES 
an be written as a 
ir
uit of and/or/not gates.

A circuit of simple gates

In
pu

t b
its

Output

and �and�, �or�, and �not� are all learnable.



A problem with Subproblem LearningTheorem: (Independent Learning Weakness) For any m, thereexists a learning problem D with subproblems D1, ..., Dm su
hthat:

e(Cf , D) =
∑

i

e(fi, Di)where e(Cf , D) is the error rate of the 
ir
uit C 
omposed of thelearned f1, ..., fm.Proof: Create a 
ir
uit where any error at any gate implies anoverall error.Impli
ation: erring on any subproblem 
an 
ause an overall error.
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End-to-End learningEssential idea: do a joint optimization of all subproblems toimprove performan
e.Primary method: gradient des
ent



A Simpli�
ation of the Problem
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Fun
tion to learn = g(wg, f(wf , x))Suppose we 
are about squared loss: Ex,y∼D(g(wg, f(wf , x))−y)2How should we tune wg and wf?



Gradient Des
ent

−
∂

∂wg
(g(wg, f(wf , x)) − y)2

= 2(g(wg, f(wf , x)) − y)
∂g(wg,f(wf ,x))

∂wgand

−
∂

∂wf
(g(wg, f(wf , x)) − y)2

= 2(g(wg, f(wf , x)) − y)
∂g(wg,f(wf ,x))

∂wf

= 2(g(wg, f(wf , x)) − y)
∂g(wg,f(wf ,x))

∂f(wf ,x)

∂f(wf ,x)

∂wf�Chain rule of di�erentiation�



Information Flow
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Gradient Direction

Evaluation Direction

Gradient 
hain rule goes in the opposite dire
tion to evaluation.



Some notes about 
hain rule learning

• Needs 
ontinuous fun
tions.
• In general, lo
al minima bite, unless the fun
tion is 
onvex.

• Sigmoid h(x) = 1
1+e−x is 
onvenient: ∂h(x)

∂x
= h(x)(1 − h(x))

• Sin
e derivatives are linear, if g uses f twi
e (happens all thetime in a big 
ir
uit), the updates to wf sum.
• The update 
an be online.



• The derivative on wf 
an 
ollapse to zero very qui
kly withdepth of a 
ir
uit. Most people use shallow stru
tures (SeeYann LeCun's Convolutional Neural Networks for a nonshal-low network).
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Problem: Your derivative is dis
ontinuous

f(x)

xSolution: Ignore the problem�you never land on the dis
onti-nuity in pra
ti
e.(See the study of �subgradients�.)



Problem: a set of weights must sum to 1Solution:
1. 
ompute a derivative

2. gradient des
ent step

3. proje
t ba
k into the allowed set

(See �extragradient� for more details.)



Problem: fun
tion is not di�erentiable at allSolution:
1. Try 
omputing a dis
rete gradient: test how small 
hanges ininput alter output. Treat the dis
rete gradient as a gradient.

2. Find some approximation whi
h is di�erentiable.



General Strategy for 
oping with Modular learning problems

1. Take advantage of all subproblem knowledge you have �rst.

2. Apply (extra|sub|dis
rete)gradient for �nal tuning.


