Modular Learning

John Langford

For COMS-4771

Real Learning Systems are complicated

How do we learn the parameters of the grass predictor?

Outline

1. Subproblem Learning

2. End-to-End Learning

3. Extensions of Gradient Descent

Subproblem Learning is Powerful

Theorem: Assuming AES encryption is unbreakable, there exists learning problems D for which direct learning of subproblems $D_1, ..., D_m$ is tractable, yet learning without subproblems is computationally intractable.

In other words: learning the full problem can be hard, but if you know the right subproblems to solve, it can become easy.

Proof: Let D be a distribution on x = AES encrypted IMs and y = plain text IMs.

- 1. y is essentially unpredictable given x.
- 2. But AES can be written as a circuit of and/or/not gates.

A circuit of simple gates

and "and", "or", and "not" are all learnable.

A problem with Subproblem Learning

Theorem: (Independent Learning Weakness) For any m, there exists a learning problem D with subproblems $D_1, ..., D_m$ such that:

$$e(C_f, D) = \sum_i e(f_i, D_i)$$

where $e(C_f, D)$ is the error rate of the circuit C composed of the learned $f_1, ..., f_m$.

Proof: Create a circuit where any error at any gate implies an overall error.

Implication: erring on any subproblem can cause an overall error.

Outline

1. Subproblem Learning

2. End-to-End Learning

3. Extensions of Gradient Descent

End-to-End learning

Essential idea: do a joint optimization of all subproblems to improve performance.

Primary method: gradient descent

A Simplification of the Problem

Function to learn = $g(w_g, f(w_f, x))$

Suppose we care about squared loss: $E_{x,y\sim D}(g(w_g,f(w_f,x))-y)^2$

How should we tune w_g and w_f ?

Gradient Descent

$$-\frac{\partial}{\partial w_g}(g(w_g, f(w_f, x)) - y)^2$$

$$= 2(g(w_g, f(w_f, x)) - y) \frac{\partial g(w_g, f(w_f, x))}{\partial w_g}$$

and

$$-\frac{\partial}{\partial w_f}(g(w_g, f(w_f, x)) - y)^2$$

$$= 2(g(w_g, f(w_f, x)) - y) \frac{\partial g(w_g, f(w_f, x))}{\partial w_f}$$

$$=2(g(w_g,f(w_f,x))-y)\frac{\partial g(w_g,f(w_f,x))}{\partial f(w_f,x)}\frac{\partial f(w_f,x)}{\partial w_f}$$

"Chain rule of differentiation"

Information Flow

Gradient chain rule goes in the opposite direction to evaluation.

Some notes about chain rule learning

Needs continuous functions.

In general, local minima bite, unless the function is convex.

• Sigmoid $h(x) = \frac{1}{1+e^{-x}}$ is convenient: $\frac{\partial h(x)}{\partial x} = h(x)(1-h(x))$

ullet Since derivatives are linear, if g uses f twice (happens all the time in a big circuit), the updates to w_f sum.

The update can be online.

 \bullet The derivative on w_f can collapse to zero very quickly with depth of a circuit. Most people use shallow structures (See Yann LeCun's Convolutional Neural Networks for a nonshallow network).

Outline

1. Subproblem Learning

2. End-to-End Learning

3. Extensions of Gradient Descent

Problem: Your derivative is discontinuous

Solution: Ignore the problem—you never land on the discontinuity in practice.

(See the study of "subgradients".)

Problem: a set of weights must sum to 1

Solution:

1. compute a derivative

2. gradient descent step

3. project back into the allowed set

(See "extragradient" for more details.)

Problem: function is not differentiable at all

Solution:

- 1. Try computing a discrete gradient: test how small changes in input alter output. Treat the discrete gradient as a gradient.
- 2. Find some approximation which is differentiable.

General Strategy for coping with Modular learning problems
1. Take advantage of all subproblem knowledge you have first.
2. Apply (extra sub discrete)gradient for final tuning.