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Real Learning Systems are complicated
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How do we learn the parameters of the grass predictor?
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Subproblem Learning is Powerful

Theorem: Assuming AES encryption is unbreakable, there ex-
ists learning problems D for which direct learning of subproblems
D+, ..., Dy, is tractable, yet learning without subproblems is com-
putationally intractable.

In other words: learning the full problem can be hard, but if you
know the right subproblems to solve, it can become easy.



Proof: Let D be a distribution on x = AES encrypted IMs and
y = plain text IMs.

1. y is essentially unpredictable given x.

2. But AES can be written as a circuit of and/or/not gates.

A circuit of simple gates
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and “and’, “or’”, and “not” are all learnable.



A problem with Subproblem Learning

Theorem: (Independent Learning Weakness) For any m, there
exists a learning problem D with subproblems Dq,..., Dy such
that:

e(Cy, D) = > e(fi, D;)

.
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where e(Cy, D) is the error rate of the circuit C' composed of the
learned f1, ..., fm.

Proof: Create a circuit where any error at any gate implies an
overall error.

Implication: erring on any subproblem can cause an overall error.
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End-to-End learning

Essential idea: do a joint optimization of all subproblems to
improve performance.

Primary method: gradient descent



A Simplification of the Problem
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Function to learn = g(wyg, f(wy,z))

Suppose we care about squared loss: E, .. p(g(wg, f(wf, z)) —y)?

How should we tune wg and w¢?



Gradient Descent
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“Chain rule of differentiation”



Information Flow
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Evaluation Direction

Gradient Direction
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Gradient chain rule goes in the opposite direction to evaluation.



Some notes about chain rule learning

Needs continuous functions.

In general, local minima bite, unless the function is convex.

Sigmoid h(z) = 1+1e—fv is convenient: 8%—(;) = h(z)(1 — h(z))

Since derivatives are linear, if g uses f twice (happens all the
time in a big circuit), the updates to w; sum.

The update can be online.



e The derivative on w; can collapse to zero very quickly with
depth of a circuit. Most people use shallow structures (See

Yann LeCun’s Convolutional Neural Networks for a nonshal-
low network).
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Problem: Your derivative is discontinuous

f(x)

Solution: Ignore the problem—you never land on the disconti-
nuity in practice.

(See the study of “subgradients’.)



Problem: a set of weights must sum to 1

Solution:

1. compute a derivative

2. gradient descent step

3. project back into the allowed set

(See “extragradient” for more details.)



Problem: function is not differentiable at all

Solution:

1. Try computing a discrete gradient: test how small changes in
input alter output. Treat the discrete gradient as a gradient.

2. Find some approximation which is differentiable.



General Strategy for coping with Modular learning problems

1. Take advantage of all subproblem knowledge you have first.

2. Apply (extra|sub|discrete)gradient for final tuning.



