Machine Learning Coms-4771

Online learning: Weighted Majority and Perceptron

Lecture 8

Recap: Predicting from Expert Advice

Online Learning Model: View learning as a sequence of trials:

- ► *N* experts give their advice
- Learner makes its prediction
- True outcome is revealed

Can we do nearly as well as the best expert in hindsight?

Weighted Majority Algorithm:

- Start with all experts having weight 1: $w_1 = w_2 = \ldots = w_N = 1$
- ▶ Predict based on weighted majority vote: Output 1 if ∑_{i:xi=1} w_i ≥ ∑_{i:xi=0} w_i, otherwise output 0.
- Penalize mistakes by cutting weight in half. If expert *i* made a mistake, set w_i ← w_i/2.

M = number of mistakes made by the algorithm, m = number of mistakes of the best expert so far

Theorem: $M \leq 2.4(m + \log N)$

Randomized Weighted Majority Algorithm

Parameter $\epsilon \in (0, 1)$.

- ▶ Start with all experts having weight 1: $w_1 = w_2 = \ldots = w_N = 1$
- Output expert *i*-th prediction with probability w_i/W , where $W = \sum_{i=1}^{N} w_i$ is the total weight (i.e., expert *i* is selected with probability proportional to w_i).
- ► Update weights: For each expert *i* who made a mistake, set w_i ← (1 − ε)w_i.

Experts	E_1	E_2	E ₃	E_4	E_5	E_6	prediction	outcome
Weights	1	1	1	1	1	1		
Advice	1	1	0	0	0	0	$0\left(\frac{2}{3}:\frac{1}{3}\right)$	1
Weights	1	1	1/2	1/2	1/2	1/2	5 5	
Advice	0	1	1	1	1	0	$1\left(\frac{3}{8}:\frac{5}{8}\right)$	0
Weights	1	1/2	1/4	1/4	1/4	1/2		

The larger the probability of a mistake, the larger the amount by which the weight is reduced.

Randomized Weighted Majority Analysis

Theorem: For any $\epsilon \in (0, 1/2]$, on any sequence of trials,

$$M \leq (1+\epsilon)m + rac{\ln N}{\epsilon}$$

where M is the *expected* number of mistakes made by the algorithm, m is the number of mistakes made by the best expert so far.

Proof:

- ► F_t = fraction of the total weight on the *wrong* answers in trial t = probability that the algorithm makes a mistake in trial t. The expected number of mistakes so far $M = \sum_{t=1}^{T} F_t$.
- After trial t, the total weight W drops by a factor of $(1 F_t \epsilon)$ (since F_t fraction made a mistake and these decrease their weight by ϵ).
- Since W is at least as large as the weight of the best expert so far, W ≥ (1 − ε)^m.
- Since initially W = N, after T trials we have

$$N\prod_{t=1}^{T}(1-F_t\epsilon) \ge (1-\epsilon)^m$$

Randomized Weighted Majority Analysis (continued)

Taking logs

$$\ln(N) + \sum_{t=1}^{T} \ln(1 - F_t \epsilon) \geq m \ln(1 - \epsilon)$$

Since $-x \ge \ln(1-x)$, we have

$$\ln(N) + \sum_{t=1}^{T} (-F_t \epsilon) = \ln(N) - \epsilon M \ge m \ln(1 - \epsilon)$$

Rearranging

$$M \leq rac{-\ln(1-\epsilon)}{\epsilon}m + rac{\ln(N)}{\epsilon}$$

The theorem follows from the fact that $-\ln(1-\epsilon) \le \epsilon(1+\epsilon)$ for $\epsilon \in [0, 1/2]$.

How do we choose ϵ ?

There is a tradeoff (using the slightly better bound at the end of the proof):

By adjusting ϵ , we can make the ratio close to 1 at the expense of the additive constant (second term).

- For a given *m*, the best setting of ϵ in the bound is $\ln(N)/m$, giving the bound $M \le m + 2\sqrt{m\ln(N)}$. (Taking the derivative of the bound in the theorem statement and setting it to 0, $m = \ln(N)\epsilon^2$)
- Guess and doubling trick: If we don't know m, start with $m = 4 \ln N$ and $\epsilon = 1/2$. Once every expert has made at least $4 \ln N$ mistakes, restart with $m = 8 \ln N$ (and $\epsilon = 1/2\sqrt{2}$).

(日) (同) (三) (三) (三) (○) (○)

Perceptron Algorithm

Vol 05, Mag

November, 1958

Psychological Review

THEODORE M. NEWCOMB, Editor University of Michigan

CONTENTS

Herbert Sidney Langfeld: 1879-1958CARROLL C. PRATE 321
Psychological Structure and Psychological ActivityHELEN PEAK 325
Basic Issues in Perceptual TheoryW. M. O'NEL 348
A Concept-Formation Approach to Attitude Acquisition
Symptoms and Symptom Substitution
Transfer of Training and Its Relation to Perceptual Learning and RecognitionJAMES M. VANDERFLAS 375

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain......F. ROSENBLATT 336

> This is the last issue of Volume 65, Title page and index for the volume appear herein.

PUBLISHED BIMONTHLY BY THE AMERICAN PSYCHOLOGICAL ASSOCIATION, INC. Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain (Psychological Review, 1958).

Thousands of citations

(The original cover can be had for just \$2300 around 2nd

Ave and 55th Street ;)

Perceptron

Winnow can learn linear threshold functions for $\{0,1\}^n$. Perceptron learns a linear threshold function $f : \mathbb{R}^n \to \{0,1\}$ of the form

$$f(\mathbf{x}) = \mathbf{1}(\mathbf{w} \cdot \mathbf{x} \ge \theta),$$

for $\mathbf{w} \in \mathbb{R}^n$, $\theta \in \mathbb{R}$.

Geometrically, f(x) defines a hyperplane separating \mathbb{R}^n into two halfspaces.

First observation: θ can be made 0 by adding a dummy variable to x that is always 1:

$$\mathbf{1}(\sum_{i=1}^n w_i x_i \geq \theta) = \mathbf{1}(\sum_{i=0}^n w_i x_i \geq 0)$$

for $w_0 = -\theta$ and $x_0 = 1$.

So it's enough to find a hyperplane going through the origin.

Perceptron Algorithm

Sequence of labeled examples $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m) \in \mathbb{R}^n \times \{0, 1\}$

Scale all examples \mathbf{x}_i so that $\|\mathbf{x}_i\| = 1$. Doesn't affect which side of the plane they are on.

Start with $\mathbf{w}_1 = \mathbf{0}$ (the all-zeros vector), set t = 1. For each *i* from 1 to *m*:

- Given example x_i, predict positive iff w_t · x_i > 0.
- On a mistake on positive, update: w_{t+1} ← w_t + x_i, increment t.
- On a mistake on negative, update: w_{t+1} ← w_t − x_i, increment t.

Intuitively right: $\mathbf{w}_{t+1} \cdot \mathbf{x}_i = (\mathbf{w}_t + \mathbf{x}_i) \cdot \mathbf{x}_i = \mathbf{w}_t \cdot \mathbf{x}_i + 1$ (similarly for negatives), so we are moving in the right direction (by 1).

Theorem For any sequence consistent with a linear threshold function $\mathbf{w}^* \cdot \mathbf{x} > 0$, where $||\mathbf{w}^*|| = 1$, the number of mistakes *M* made by the online Perceptron algorithm is at most $1/\gamma^2$, where

$$\gamma = \min_{\mathbf{x}_i} \mid \mathbf{w}^* \cdot \mathbf{x}_i \mid,$$

the min distance of any example to the plane $\mathbf{w}^* \cdot \mathbf{x} = 0$ (called the *margin* of \mathbf{w}^*). (Recall that all $\|\mathbf{x}_i\| = 1$.)

Claim 1: Every time we make a mistake $\mathbf{w}_t \cdot \mathbf{w}^*$ goes up by at least γ . If \mathbf{x}_i is positive, then we get $\mathbf{w}_{t+1} \cdot \mathbf{w}^* = (\mathbf{w}_t + \mathbf{x}_i) \cdot \mathbf{w}^* = \mathbf{w}_t \cdot \mathbf{w}^* + \mathbf{x}_i \cdot \mathbf{w}^* \ge \mathbf{w}_t \cdot \mathbf{w}^* + \gamma$, by definition of γ . Similarly for negative \mathbf{x}_i , we get $(\mathbf{w}_t - \mathbf{x}_i) \cdot \mathbf{w}^* = \mathbf{w}_t \cdot \mathbf{w}^* - \mathbf{x}_i \cdot \mathbf{w}^* \ge \mathbf{w}_t \cdot \mathbf{w}^* + \gamma$. So, after M mistakes $\mathbf{w}_{M+1} \cdot \mathbf{w}^* \ge \gamma M$.

Claim 2: Every time we make a mistake, $\|\mathbf{w}_t\|^2$ goes up by at most 1. If \mathbf{x}_i was positive, we get $\|\mathbf{w}_t + \mathbf{x}_i\|^2 = \|\mathbf{w}_t\|^2 + 2\mathbf{w}_t \cdot \mathbf{x}_i + \|\mathbf{x}_i\|^2 \le \|\mathbf{w}_t\|^2 + 1$. The last inequality is due to the fact that $\mathbf{w}_t \cdot \mathbf{x}_i$ was negative (since we made a mistake on \mathbf{x}_i). Similarly for negatives. So after M mistakes, $\|\mathbf{w}_{M+1}\| \le \sqrt{M}$.

Now $\mathbf{w}_t \cdot \mathbf{w}^* = \|\mathbf{w}_t\| \cos(\mathbf{w}_t, \mathbf{w}^*) \le \|\mathbf{w}_t\|$ (since $\cos(\mathbf{w}_t, \mathbf{w}^*) \le 1$). So $\gamma M \le \sqrt{M}$, and $M \le 1/\gamma^2$.

- If data is separable by a large margin, then Perceptron is a good algorithm to use.
- If there is no perfect separator or only most data is separable by a large margin: Can bound the total number of mistakes we make in terms of the total distance TD_γ we have to move points to make them separable by margin γ:

$$M \leq 1/\gamma^2 + (2/\gamma) \mathsf{TD}_{\gamma}$$

(can't say that we are making only a small multiple of the number of mistakes made by \mathbf{w}^* , but we are doing well in terms of TD_γ)

 What if our data doesn't have a good linear separator? Kernels (Sanjoy's lectures in a couple of weeks)