
Machine Learning Coms-4771

Online learning: Weighted Majority
and Perceptron

Lecture 8

Recap: Predicting from Expert Advice

Online Learning Model: View learning as a sequence of trials:

I N experts give their advice

I Learner makes its prediction

I True outcome is revealed

Can we do nearly as well as the best expert in hindsight?

Weighted Majority Algorithm:

I Start with all experts having weight 1: w1 = w2 = . . . = wN = 1

I Predict based on weighted majority vote: Output 1 ifP
i :xi =1 wi ≥

P
i :xi =0 wi , otherwise output 0.

I Penalize mistakes by cutting weight in half. If expert i made a mistake,
set wi ← wi/2.

M = number of mistakes made by the algorithm, m = number of mistakes of
the best expert so far

Theorem: M ≤ 2.4(m + log N)

Randomized Weighted Majority Algorithm

Parameter ε ∈ (0, 1).

I Start with all experts having weight 1: w1 = w2 = . . . = wN = 1

I Output expert i-th prediction with probability wi/W , where

W =
∑N

i=1 wi is the total weight (i.e., expert i is selected with
probability proportional to wi).

I Update weights: For each expert i who made a mistake, set
wi ← (1− ε)wi .

Algorithm in Action ε = 1/2:

Experts E1 E2 E3 E4 E5 E6 prediction outcome
Weights 1 1 1 1 1 1

Advice 1 1 0 0 0 0 0 (2
3

: 1
3
) 1

Weights 1 1 1/2 1/2 1/2 1/2

Advice 0 1 1 1 1 0 1 (3
8

: 5
8
) 0

Weights 1 1/2 1/4 1/4 1/4 1/2

The larger the probability of a mistake, the larger the amount by which

the weight is reduced.

Randomized Weighted Majority Analysis
Theorem: For any ε ∈ (0, 1/2], on any sequence of trials,

M ≤ (1 + ε)m +
ln N

ε

where M is the expected number of mistakes made by the algorithm, m
is the number of mistakes made by the best expert so far.

Proof:

I Ft = fraction of the total weight on the wrong answers in trial t =
probability that the algorithm makes a mistake in trial t. The
expected number of mistakes so far M =

∑T
t=1 Ft .

I After trial t, the total weight W drops by a factor of (1−Ftε) (since
Ft fraction made a mistake and these decrease their weight by ε).

I Since W is at least as large as the weight of the best expert so far,
W ≥ (1− ε)m.

I Since initially W = N, after T trials we have

N
T∏

t=1

(1− Ftε) ≥ (1− ε)m

Randomized Weighted Majority Analysis (continued)

Taking logs

ln(N) +
T∑

t=1

ln(1− Ftε) ≥ m ln(1− ε)

Since −x ≥ ln(1− x), we have

ln(N) +
T∑

t=1

(−Ftε) = ln(N)− εM ≥ m ln(1− ε)

Rearranging

M ≤ − ln(1− ε)
ε

m +
ln(N)

ε

The theorem follows from the fact that
− ln(1− ε) ≤ ε(1 + ε) for ε ∈ [0, 1/2].

How do we choose ε?

I There is a tradeoff (using the slightly better bound at the end of the proof):

ε M
1/2 1.39m + 2 ln N
1/4 1.15︸︷︷︸
competitive ratio

m + 4 ln N

By adjusting ε, we can make the ratio close to 1 at the expense of
the additive constant (second term).

I For a given m, the best setting of ε in the bound is ln(N)/m, giving
the bound M ≤ m + 2

√
m ln(N). (Taking the derivative of the bound in the theorem

statement and setting it to 0, m = ln(N)ε2)

I Guess and doubling trick: If we don’t know m, start with m = 4 ln N
and ε = 1/2. Once every expert has made at least 4 ln N mistakes,
restart with m = 8 ln N (and ε = 1/2

√
2).

Perceptron Algorithm

Frank Rosenblatt. The Perceptron:
A Probabilistic Model for Information
Storage and Organization in the Brain
(Psychological Review, 1958).

Thousands of citations

(The original cover can be had for just $2300 around 2nd

Ave and 55th Street ;)

Perceptron

Winnow can learn linear threshold functions for {0, 1}n. Perceptron learns a
linear threshold function f : Rn → {0, 1} of the form

f (x) = 1(w · x ≥ θ),

for w ∈ Rn, θ ∈ R.

Geometrically, f (x) defines a hyperplane separating Rn into two halfspaces.

First observation: θ can be made 0 by adding a dummy variable to x that is
always 1:

1(
nX

i=1

wixi ≥ θ) = 1(
nX

i=0

wixi ≥ 0)

for w0 = −θ and x0 = 1.

So it’s enough to find a hyperplane going through the origin.

Perceptron Algorithm

Sequence of labeled examples
(x1, y1), . . . , (xm, ym) ∈ Rn × {0, 1}

Scale all examples xi so that
‖xi‖ = 1. Doesn’t affect which side of
the plane they are on.

Start with w1 = 0 (the all-zeros vector), set
t = 1. For each i from 1 to m:

I Given example xi , predict positive iff
wt · xi > 0.

I On a mistake on positive, update:
wt+1 ← wt + xi , increment t.

I On a mistake on negative, update:
wt+1 ← wt − xi , increment t.

Intuitively right: wt+1 · xi = (wt + xi) · xi = wt · xi + 1 (similarly for negatives),

so we are moving in the right direction (by 1).

Theorem For any sequence consistent with a linear threshold function
w∗ · x > 0, where ‖w∗‖ = 1, the number of mistakes M made by the online
Perceptron algorithm is at most 1/γ2, where

γ = min
xi

| w∗ · xi |,

the min distance of any example to the plane w∗ · x = 0 (called the margin of
w∗). (Recall that all ‖xi‖ = 1.)

Claim 1: Every time we make a mistake wt · w∗ goes up by at least γ.
If xi is positive, then we get
wt+1 ·w∗ = (wt + xi) ·w∗ = wt ·w∗ + xi ·w∗ ≥ wt ·w∗ + γ, by definition of γ.
Similarly for negative xi , we get (wt − xi) ·w∗ = wt ·w∗− xi ·w∗ ≥ wt ·w∗+ γ.
So, after M mistakes wM+1 · w∗ ≥ γM.

Claim 2: Every time we make a mistake, ‖wt‖2 goes up by at most 1.
If xi was positive, we get ‖wt + xi‖2 = ‖wt‖2 + 2wt · xi + ‖xi‖2 ≤ ‖wt‖2 + 1.
The last inequality is due to the fact that wt · xi was negative (since we made a
mistake on xi). Similarly for negatives. So after M mistakes, ‖wM+1‖ ≤

√
M.

Now wt · w∗ = ‖wt‖ cos(wt ,w
∗) ≤ ‖wt‖ (since cos(wt ,w

∗) ≤ 1). So

γM ≤
√

M, and M ≤ 1/γ2.

I If data is separable by a large margin, then Perceptron is a good
algorithm to use.

I If there is no perfect separator or only most data is separable by a large
margin: Can bound the total number of mistakes we make in terms of the
total distance TDγ we have to move points to make them separable by
margin γ:

M ≤ 1/γ2 + (2/γ)TDγ

(can’t say that we are making only a small multiple of the number of
mistakes made by w∗, but we are doing well in terms of TDγ)

I What if our data doesn’t have a good linear separator? Kernels (Sanjoy’s
lectures in a couple of weeks)

