Machine Learning Coms-4771

Online learning: Weighted Majority
and Perceptron

Lecture 8

Recap: Predicting from Expert Advice

Online Learning Model: View learning as a sequence of trials:
» N experts give their advice
» Learner makes its prediction
» True outcome is revealed

Can we do nearly as well as the best expert in hindsight?

Weighted Majority Algorithm:
» Start with all experts having weight 1: wvi =ws = ... =wy =1

» Predict based on weighted majority vote: Output 1 if
D=1 Wi = Do Wi, otherwise output 0.
» Penalize mistakes by cutting weight in half. If expert i made a mistake,
set w; «— W,'/2.
M = number of mistakes made by the algorithm, m = number of mistakes of
the best expert so far
Theorem: M < 2.4(m+ log N)

Randomized Weighted Majority Algorithm
Parameter € € (0,1).
» Start with all experts having weight 1: wy =wp, =... =wy =1

» Output expert i-th prediction with probability w;/ W, where

W = SN | w; is the total weight (i.e., expert i is selected with
probability proportional to w;).

» Update weights: For each expert i who made a mistake, set
Wi «— (1 — E)W,'.

Algorithm in Action e = 1/2:

Experts E; E; Es Ey Es Eg prediction outcome
Weights 1 1 1 1 1 1

Advice | 1 1 o 0o o o0 [0(3:3) 1
Weights | 1 1 1/2 1/2 1/2 1/2

Advice | 0 1 1 1 1 0 [1(3:3) 0
Weights | 1 1/2 1/4 1/4 1/4 1/2

The larger the probability of a mistake, the larger the amount by which
the weight is reduced.

Randomized Weighted Majority Analysis

Theorem: For any € € (0,1/2], on any sequence of trials,

In N
M§(1+e)m+n—
€

where M is the expected number of mistakes made by the algorithm, m
is the number of mistakes made by the best expert so far.
Proof:

» F, = fraction of the total weight on the wrong answers in trial t =
probability that the algorithm makes a mistake in trial t. The
expected number of mistakes so far M = Z;l F,

> After trial t, the total weight W drops by a factor of (1 — Fie) (since
F; fraction made a mistake and these decrease their weight by ¢).

» Since W is at least as large as the weight of the best expert so far,
W>(1-¢€)m.
» Since initially W = N, after T trials we have

NH 1—Fe)>(1—e)m

Randomized Weighted Majority Analysis (continued)

Taking logs
-

n(N)+ > In(1— Fee) > min(1 —¢)
t=1

Since —x > In(1 — x), we have

;
In(N) +) (—Fee) = In(N) — eM > min(1 —)
t=1

a0 ——

Rearranging

—In(1 - e)m n In(N)

€ €

M <

The theorem follows from the fact that

—In(1—¢€) <e(l+e)foreec]0,1/2].

How do we choose €?

» There is a tradeoff (using the slightly better bound at the end of the proof).

€ M
1/2 1.39m+2InN
1/4 1.15m+4InN
<~

competitive ratio

By adjusting €, we can make the ratio close to 1 at the expense of
the additive constant (second term).

» For a given m, the best setting of ¢ in the bound is In(N)/m, giving
the bound M S m —+ 2\/ m |n(N) (Taking the derivative of the bound in the theorem

statement and setting it to 0, m = In(N)e?)

» Guess and doubling trick: If we don’t know m, start with m=41In N
and € = 1/2. Once every expert has made at least 4In N mistakes,
restart with m = 8In N (and € = 1/2v/2).

Perceptron Algorithm

Frank Rosenblatt. The Perceptron:

A Probabilistic Model for Information
Storage and Organization in the Brain
(Psychological Review, 1958).

Thousands of citations

(The original cover can be had for just $2300 around 2nd

Ave and 55th Street ;)

u]
o)

I

i
it
)
»
i)

Perceptron

Winnow can learn linear threshold functions for {0,1}". Perceptron learns a
linear threshold function f : R" — {0,1} of the form

f(x) =1(w-x>0),
forw e R", 6 € R.
Geometrically, f(x) defines a hyperplane separating R” into two halfspaces.

First observation: 6 can be made 0 by adding a dummy variable to x that is
always 1:

l(i Wi X 2 9) = l(i Wi X; 2 0)
i=1 i=0

for wo = —60 and xp = 1.

So it's enough to find a hyperplane going through the origin.

Perceptron Algorithm

Sequence of labeled examples
(X17 y1)7 M) (Xmaym) e Rn >< {07 1}

Start with wy = 0 (the all-zeros vector), set
t = 1. For each i from 1 to m:
» Given example x;, predict positive iff
w; - x; > 0.

» On a mistake on positive, update:
Wil <— We + Xj, increment t.

» On a mistake on negative, update:
Wil <— W — Xj, increment t.

Scale all examples x; so that
[xi|| = 1. Doesn't affect which side of
the plane they are on.

Intuitively right: wep1 - x; = (We + %) - X; = we - x; + 1 (similarly for negatives),

so we are moving in the right direction (by 1).

Theorem For any sequence consistent with a linear threshold function
w”* - x > 0, where ||w*|| = 1, the number of mistakes M made by the online
Perceptron algorithm is at most 1/, where

v =min|w* x|,
Xj

the min distance of any example to the plane w* - x = 0 (called the margin of
W), (Recall that all [|x;]| = 1.)

Claim 1: Every time we make a mistake w; - w* goes up by at least .

If x; is positive, then we get

Wepr W = (W + X)W =we-w" +x;-w* > w;-w” 4+, by definition of 7.
Similarly for negative x;, we get (W — X;i)-W" = we - W™ —x; - w* > w;-w* + 7.
So, after M mistakes wps41 - w* > yM.

Claim 2: Every time we make a mistake, ||w¢||?> goes up by at most 1.

If x; was positive, we get ||wr + x;||> = [|we]|? + 2w, - x; + [|xi||* < |lwe]? + 1.
The last inequality is due to the fact that w; - x; was negative (since we made a
mistake on x;). Similarly for negatives. So after M mistakes, ||[wnt1| < VM.

Now w; - w* = ||we|| cos(we, w*) < |lwe|| (since cos(w:,w*) < 1). So
YM < VM, and M < 1/~

>

>

If data is separable by a large margin, then Perceptron is a good
algorithm to use.
If there is no perfect separator or only most data is separable by a large
margin: Can bound the total number of mistakes we make in terms of the
total distance TD, we have to move points to make them separable by
margin ~:

M < 1/4% +(2/~)TD,
(can't say that we are making only a small multiple of the number of
mistakes made by w*, but we are doing well in terms of TD,)

What if our data doesn’t have a good linear separator? Kernels (Sanjoy’s
lectures in a couple of weeks)

