Machine Learning Coms-4771

Machine Learning Theory The Winnow Algorithm
 Lecture 7

Based on Avrim Blum's notes (see the link at the web page)

Recap

SPAM Example: Each email = a boolean vector indicating which phrases appear and which don't (in some predetermined set of n phrases).
Email $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$.

$\$ \$ \$$	100% free	earn $\$$	double your income	weight loss	\ldots	requested	spam or not?
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots	x_{n}	$f(x)$
0	1	0	0	0	\ldots	0	$?$

Target function/concept: A monotone disjunction $f(x)=$ a boolean function of the form $\bigvee_{i \in S} x_{i}$ for some subset $S \subseteq\{1, \ldots, n\}$. (SPAM if at least one of the phrases in S is present).

Mistake Bound Model: View learning as a sequence of trials

- The learner gets an unlabeled example x,
- predicts its classification,
- learns whether or not it made a mistake.

Goal: minimize the number of mistakes
Mistake Bound Definition: Algorithm A learns a class of functions C with mistake bound M if A makes at most M mistakes on any sequence of examples consistent with some $f \in C$.

Simple algorithm for learning a disjunction

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	our prediction of $f(x)$	$f(x)$
1	0	0	0	0	0	$1\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)$	0
0	1	0	1	1	1	$1\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)$	1
0	0	0	0	0	1	$1\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)$	0
0	0	0	1	1	1	$1\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right)$	0
0	0	0	0	1	1	$0\left(x_{2} \vee x_{3}\right)$	0
		\ldots	\ldots	\ldots			

(mistakes in red; the target is $x_{2} \vee x_{3}$)

- Algorithm: list all features and cross off bad ones on negative examples.
- Makes at most n mistakes.
- Problem: n can be very large! What if the target function is an OR on a small subset of r relevant features?
- Today: Winnow algorithm which gives us a mistake bound of $O(r \log n)$.

The Winnow Algorithm (for OR functions)

- Initialize the weights $w_{1}=w_{2}=\ldots=w_{n}=1$ on the n variables.
- Given an example $x=\left(x_{1}, \ldots, x_{n}\right)$, output 1 if

$$
\sum_{i=1}^{n} w_{i} x_{i} \geq n
$$

else output 0 .

- If the algorithm makes a mistake:
- (on positive) If it predicts 0 when $f(x)=1$, then for each x_{i} equal to 1 , double the value of w_{i}.
- (on negative) If it predicts 1 when $f(x)=0$, then for each x_{i} equal to 1 , cut the value of w_{i} in half.

Winnow in Action

\(\left.$$
\begin{array}{cccccc|c}\begin{array}{c}x_{1} \\
w_{1}=1\end{array}
$$ \& \begin{array}{c}x_{2}

w_{2}=1\end{array} \& x_{3} \& x_{4}=1 \& x_{4}=1 \& x_{5} \& x_{5}=1\end{array} $$
\begin{array}{c}w_{6}=1\end{array}
$$\right)\)| prediction |
| :---: |
| of $f(x)$ |

(mistakes in red; the target $f(x)=x_{2} \vee x_{3}, n=6, r=2$)
Algorithm repeated:

- On x, predict $\mathbf{1}\left(\sum_{i} w_{i} x_{i} \geq n\right)$.
- (mistake on positive) If it predicts 0 when $f(x)=1$, then for each x_{i} equal to 1 , double the value of w_{i}.
- (mistake on negative) If it predicts 1 when $f(x)=0$, then for each x_{i} equal to 1 , cut the value of w_{i} in half.

Mistake Bound

Theorem The Winnow learns the class of disjunctions with mistake bound of $2+3 r\lceil\log n\rceil$ when the target concept f is an OR of r variables. Proof

- (mistakes on positive examples) Any mistake on a positive doubles the weight of at least one of the variables in f. And a mistake on a negative cannot halve any of the relevant weights. Since we can't make a mistake on a positive when at least one of the weights is $\geq n$, we can make at most $r\lceil\log n\rceil$ mistakes on positive examples.
- (mistakes on negative examples) Initially $W=\sum_{i} w_{i}=n$. Each mistake on a positive increases W by at most n (since we had $W \leq n$ and predicted 0 instead of 1). Each mistake on a negative, decreases W by at least $n / 2$. Letting m_{n} and m_{p} be the number of mistakes on negatives and positives respectively,

$$
n+n \cdot m_{p}-\frac{n}{2} m_{n}>0
$$

since W always remains positive. Simplifying, $m_{n}<2 m_{p}+2$.

- Total number of mistakes $3 r\lceil\log n\rceil+2$.

What if the examples are not completely consistent with a disjunction?

- A positive example satisfying none of relevant variables can cause W to increase by at most n (resulting in at most 2 additional mistakes on negatives to bring it back down; indeed, each time we predict 1 on a 0 , we decrease the irrelevant weight in W by at least $n / 2$).
- A negative example satisfying t relevant variables can cause t relevant weights to be halved (resulting in at most t more mistakes on positives to fix, in turn causing up to $2 t$ mistakes on negatives)
- Mistake bound goes up by at most O (\#attribute errors).

Notes

Winnow is more general: It can learn the class of linear threshold functions $f(x)=1$ if $\sum_{i} a_{i} x_{i} \geq b$ for non-negative integers a_{1}, \ldots, a_{n}, b.

An r-OR corresponds to the case when $b=1$ and $a_{i}=1$ for the r relevant variables and 0 for others.

Encodes other important functions as well. Read Littlestone's paper linked at the web page.

Predicting from Expert Advice

- Think of N experts giving advice to you. (Expert = someone with an opinion, not necessarily someone who knows anything.) There doesn't have to be a perfect expert.
- Want to do nearly as well as the best expert in hindsight.
- Can view each expert as a different $f \in C$.

Example: We want to predict the stock market.

Expert 1	Expert 2	Expert 3	\ldots	Expert N	truth
down	up	up	\ldots	down	up
down	down	up	\ldots	down	down
		\ldots			\ldots

If one expert is perfect, can get at most $\log N$ mistakes with halving algorithm. What if none is perfect? Can we do nearly as well as the best one in hindsight?

Simple Strategy: Iterated Halving

- Run halving, but restart every time we've crossed off all experts.
- Makes at most $(\log N)(m+1)$ mistakes, where m is the number of mistakes made by the best expert in hindsight.
- Seems wasteful. We keep forgetting everything we've learned. Can we do better?

Weighted Majority Algorithm

Making a mistake shouldn't disqualify an expert. Instead of crossing off, just lower the expert's weight.

Algorithm:

- Start with all experts having weight 1: $w_{1}=w_{2}=\ldots=w_{N}=1$
- Predict based on weighted majority vote: Output 1 if

$$
\sum_{i: x_{i}=1} w_{i} \geq \sum_{i: x_{i}=0} w_{i}
$$

otherwise output 0 .

- Penalize mistakes by cutting weight in half. If expert i made a mistake, set $w_{i} \leftarrow w_{i} / 2$; otherwise, keep the weight unchanged.

Weighted Majority Algorithm: Analysis

Theorem: The number of mistakes M made by the Weighted Majority is never more than $2.41(m+\log N)$, where m is the number of mistakes made by the best expert so far.

Proof: $W=\sum_{i} w_{i}=$ total weight, initially $W=N$. After each mistake, at least half of the total weight of experts predicts incorrrectly, so W goes down by at least a factor of $1 / 4$.
After the algorithm makes M mistakes, we have

$$
W \leq N(3 / 4)^{M}
$$

If the best expert has made m mistakes, its weight is $1 / 2^{m}$ and so

$$
W \geq 1 / 2^{m}
$$

Combining gives $1 / 2^{m} \leq N(3 / 4)^{M}$. Solving for M :

$$
M \leq \frac{1}{\log (4 / 3)}(m+\log N) \leq 2.41(m+\log N) .
$$

Next: Randomized Weighted Majority Algorithm

$2.41(m+\log N)$ is not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.

Instead of taking majority vote, use weights as probabilities. So if 70% of the weight predicts "yes", and 30% predicts "no", pick 70:30.
Intuition: smooth out the worst case.

