Machine Learning Coms-4771

Machine Learning Theory The Winnow Algorithm

Based on Avrim Blum's notes (see the link at the web page)

Recap

SPAM Example: Each email = a boolean vector indicating which phrases appear and which don't (in some predetermined set of *n* phrases). Email $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

\$\$\$	100% free	earn \$	double your income	weight loss		requested	spam or not?
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	• • •	x _n	f(x)
0	1	0	0	0		0	?

Target function/concept: A monotone disjunction f(x) = a boolean function of the form $\bigvee_{i \in S} x_i$ for some subset $S \subseteq \{1, \ldots, n\}$. (SPAM if at least one of the phrases in S is present).

Mistake Bound Model: View learning as a sequence of trials

- ▶ The learner gets an unlabeled example *x*,
- predicts its classification,
- learns whether or not it made a mistake.

Goal: minimize the number of mistakes

Mistake Bound Definition: Algorithm A learns a class of functions C with mistake bound M if A makes at most M mistakes on any sequence of examples consistent with some $f \in C$.

Simple algorithm for learning a disjunction

x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	our prediction of $f(x)$	f(x)
1	0	0	0	0	0	$1 (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6)$	0
0	1	0	1	1	1	$1 (x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6)$	1
0	0	0	0	0	1	$1 (x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6)$	0
0	0	0	1	1	1	$1 (x_2 \lor x_3 \lor x_4 \lor x_5)$	0
0	0	0	0	1	1	$0 (x_2 \lor x_3)$	0
(mistakes in red; the target is $x_2 \lor x_3$)							

- Algorithm: list all features and cross off bad ones on negative examples.
- Makes at most n mistakes.
- Problem: n can be very large! What if the target function is an OR on a small subset of r relevant features?
- Today: Winnow algorithm which gives us a mistake bound of O(r log n).

The Winnow Algorithm (for OR functions)

- ▶ Initialize the weights $w_1 = w_2 = \ldots = w_n = 1$ on the *n* variables.
- Given an example $x = (x_1, \ldots, x_n)$, output 1 if

$$\sum_{i=1}^n w_i x_i \ge n,$$

else output 0.

- If the algorithm makes a mistake:
 - ► (on positive) If it predicts 0 when f(x) = 1, then for each x_i equal to 1, double the value of w_i.
 - ► (on negative) If it predicts 1 when f(x) = 0, then for each x_i equal to 1, cut the value of w_i in half.

Winnow in Action

x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	prediction
$w_1 = 1$	$w_2 = 1$	$w_3 = 1$	$w_4 = 1$	$w_5 = 1$	$w_6 = 1$	of $f(x)$
1	0	0	0	0	0	$0 (\sum_{i} x_{i} w_{i} = 1 \ge 6?)$
0	1	0	1	1	1	$0 (\sum_{i} x_i w_i = 4 \ge 6?)$
$w_1 = 1$	$w_2 = 2$	$w_3 = 1$	$w_4 = 2$	$w_5 = 2$	$w_{6} = 2$	double w_i for $x_i = 1$
0	0	0	0	0	1	$0 (2 \ge 6?)$
0	0	0	1	1	1	$1 (6 \ge 6?)$
$w_1 = 1$	$w_2 = 2$	$w_3 = 1$	$w_4 = 1$	$w_5 = 1$	$w_{6} = 1$	halve w_i for $x_i = 1$
0	0	0	0	1	1	$0 (2 \ge 6?)$

(mistakes in red; the target $f(x) = x_2 \vee x_3$, n = 6, r = 2)

Algorithm repeated:

- On x, predict $\mathbf{1}(\sum_i w_i x_i \ge n)$.
- (mistake on positive) If it predicts 0 when f(x) = 1, then for each x_i equal to 1, double the value of w_i.
- (mistake on negative) If it predicts 1 when f(x) = 0, then for each x_i equal to 1, cut the value of w_i in half.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mistake Bound

Theorem The Winnow learns the class of disjunctions with mistake bound of $2 + 3r \lceil \log n \rceil$ when the target concept f is an OR of r variables. **Proof**

- ► (mistakes on positive examples) Any mistake on a positive doubles the weight of at least one of the variables in *f*. And a mistake on a negative cannot halve any of the relevant weights. Since we can't make a mistake on a positive when at least one of the weights is ≥ *n*, we can make at most *r*[log *n*] mistakes on positive examples.
- ► (mistakes on negative examples) Initially W = ∑_i w_i = n. Each mistake on a positive increases W by at most n (since we had W ≤ n and predicted 0 instead of 1). Each mistake on a negative, decreases W by at least n/2. Letting m_n and m_p be the number of mistakes on negatives and positives respectively,

$$n+n\cdot m_p-\frac{n}{2}m_n>0,$$

since W always remains positive. Simplifying, $m_n < 2m_p + 2$.

• Total number of mistakes $3r \lceil \log n \rceil + 2$.

What if the examples are not completely consistent with a disjunction?

- A positive example satisfying none of relevant variables can cause W to increase by at most n (resulting in at most 2 additional mistakes on negatives to bring it back down; indeed, each time we predict 1 on a 0, we decrease the irrelevant weight in W by at least n/2).
- A negative example satisfying t relevant variables can cause t relevant weights to be halved (resulting in at most t more mistakes on positives to fix, in turn causing up to 2t mistakes on negatives)

• Mistake bound goes up by at most O(#attribute errors).

Notes

Winnow is more general: It can learn the class of linear threshold functions f(x) = 1 if $\sum_{i} a_i x_i \ge b$ for non-negative integers a_1, \ldots, a_n, b .

An *r*-OR corresponds to the case when b = 1 and $a_i = 1$ for the *r* relevant variables and 0 for others.

Encodes other important functions as well. Read Littlestone's paper linked at the web page.

Predicting from Expert Advice

- Think of N experts giving advice to you. (Expert = someone with an opinion, not necessarily someone who knows anything.) There doesn't have to be a perfect expert.
- ▶ Want to do nearly as well as the best expert in hindsight.
- Can view each expert as a different $f \in C$.

Example: We want to predict the stock market.

Expert 1	Expert 2	Expert 3	 Expert N	truth
down	up	up	 down	up
down	down	up	 down	down

If one expert is perfect, can get at most log N mistakes with halving algorithm. What if none is perfect? Can we do nearly as well as the best one in hindsight?

Simple Strategy: Iterated Halving

- Run halving, but restart every time we've crossed off all experts.
- Makes at most (log N)(m + 1) mistakes, where m is the number of mistakes made by the best expert in hindsight.
- Seems wasteful. We keep forgetting everything we've learned. Can we do better?

Weighted Majority Algorithm

Making a mistake shouldn't disqualify an expert. Instead of crossing off, just lower the expert's weight.

Algorithm:

- Start with all experts having weight 1: $w_1 = w_2 = \ldots = w_N = 1$
- Predict based on weighted majority vote: Output 1 if

i

$$\sum_{x_i=1} w_i \geq \sum_{i:x_i=0} w_i,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

otherwise output 0.

Penalize mistakes by cutting weight in half. If expert *i* made a mistake, set w_i ← w_i/2; otherwise, keep the weight unchanged.

Weighted Majority Algorithm: Analysis

Theorem: The number of mistakes M made by the Weighted Majority is never more than $2.41(m + \log N)$, where m is the number of mistakes made by the best expert so far.

Proof: $W = \sum_{i} w_{i}$ = total weight, initially W = N. After each mistake, at least half of the total weight of experts predicts incorrectly, so W goes down by at least a factor of 1/4. After the algorithm makes M mistakes, we have

$$W \leq N(3/4)^M$$
.

If the best expert has made m mistakes, its weight is $1/2^m$ and so

$$W \ge 1/2^{m}$$
.

Combining gives $1/2^m \leq N(3/4)^M$. Solving for *M*:

$$M \leq rac{1}{\log(4/3)}(m + \log N) \leq 2.41(m + \log N).$$

Next: Randomized Weighted Majority Algorithm

 $2.41(m + \log N)$ is not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.

Instead of taking majority vote, use weights as probabilities. So if 70% of the weight predicts "yes", and 30% predicts "no", pick 70:30. Intuition: smooth out the worst case.