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Machine Learning Theory
The Winnow Algorithm

Lecture 7

Based on Avrim Blum’s notes (see the link at the web page)



Recap

SPAM Example: Each email = a boolean vector indicating which phrases
appear and which don’t (in some predetermined set of n phrases).
Email x = (x1, . . . , xn) ∈ {0, 1}n.

$$$ 100% free earn $ double your income weight loss . . . requested spam or not?

x1 x2 x3 x4 x5 . . . xn f (x)
0 1 0 0 0 . . . 0 ?

Target function/concept: A monotone disjunction f (x) = a boolean function
of the form

W
i∈S xi for some subset S ⊆ {1, . . . , n}. (SPAM if at least one of

the phrases in S is present).

Mistake Bound Model: View learning as a sequence of trials

I The learner gets an unlabeled example x ,

I predicts its classification,

I learns whether or not it made a mistake.

Goal: minimize the number of mistakes

Mistake Bound Definition: Algorithm A learns a class of functions C with

mistake bound M if A makes at most M mistakes on any sequence of examples

consistent with some f ∈ C .



Simple algorithm for learning a disjunction

x1 x2 x3 x4 x5 x6 our prediction of f (x) f (x)

1 0 0 0 0 0 1 (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) 0
0 1 0 1 1 1 1 (x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) 1
0 0 0 0 0 1 1 (x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) 0
0 0 0 1 1 1 1 (x2 ∨ x3 ∨ x4 ∨ x5) 0
0 0 0 0 1 1 0 (x2 ∨ x3) 0

. . . . . . . . .
(mistakes in red; the target is x2 ∨ x3)

I Algorithm: list all features and cross off bad ones on negative
examples.

I Makes at most n mistakes.

I Problem: n can be very large! What if the target function is an OR
on a small subset of r relevant features?

I Today: Winnow algorithm which gives us a mistake bound of
O(r log n).



The Winnow Algorithm (for OR functions)

I Initialize the weights w1 = w2 = . . . = wn = 1 on the n variables.

I Given an example x = (x1, . . . , xn), output 1 if

n∑
i=1

wixi ≥ n,

else output 0.

I If the algorithm makes a mistake:

I (on positive) If it predicts 0 when f (x) = 1, then for each xi

equal to 1, double the value of wi .
I (on negative) If it predicts 1 when f (x) = 0, then for each xi

equal to 1, cut the value of wi in half.



Winnow in Action

x1 x2 x3 x4 x5 x6 prediction
w1 = 1 w2 = 1 w3 = 1 w4 = 1 w5 = 1 w6 = 1 of f (x)

1 0 0 0 0 0 0 (
P

i xiwi = 1 ≥ 6?)
0 1 0 1 1 1 0 (

P
i xiwi = 4 ≥ 6?)

w1 = 1 w2 = 2 w3 = 1 w4 = 2 w5 = 2 w6 = 2 double wi for xi = 1
0 0 0 0 0 1 0 (2 ≥ 6?)
0 0 0 1 1 1 1 (6 ≥ 6?)

w1 = 1 w2 = 2 w3 = 1 w4 = 1 w5 = 1 w6 = 1 halve wi for xi = 1
0 0 0 0 1 1 0 (2 ≥ 6?)

. . . . . .

(mistakes in red; the target f (x) = x2 ∨ x3, n = 6, r = 2)

Algorithm repeated:

I On x , predict 1(
∑

i wixi ≥ n).

I (mistake on positive) If it predicts 0 when f (x) = 1, then for each xi

equal to 1, double the value of wi .

I (mistake on negative) If it predicts 1 when f (x) = 0, then for each
xi equal to 1, cut the value of wi in half.



Mistake Bound
Theorem The Winnow learns the class of disjunctions with mistake
bound of 2 + 3rdlog ne when the target concept f is an OR of r variables.
Proof

I (mistakes on positive examples) Any mistake on a positive doubles
the weight of at least one of the variables in f . And a mistake on a
negative cannot halve any of the relevant weights. Since we can’t
make a mistake on a positive when at least one of the weights is
≥ n, we can make at most rdlog ne mistakes on positive examples.

I (mistakes on negative examples) Initially W =
∑

i wi = n. Each
mistake on a positive increases W by at most n (since we had
W ≤ n and predicted 0 instead of 1). Each mistake on a negative,
decreases W by at least n/2. Letting mn and mp be the number of
mistakes on negatives and positives respectively,

n + n ·mp −
n

2
mn > 0,

since W always remains positive. Simplifying, mn < 2mp + 2.

I Total number of mistakes 3rdlog ne+ 2.



What if the examples are not completely consistent with a
disjunction?

I A positive example satisfying none of relevant variables can cause W
to increase by at most n (resulting in at most 2 additional mistakes
on negatives to bring it back down; indeed, each time we predict 1
on a 0, we decrease the irrelevant weight in W by at least n/2).

I A negative example satisfying t relevant variables can cause t
relevant weights to be halved (resulting in at most t more mistakes
on positives to fix, in turn causing up to 2t mistakes on negatives)

I Mistake bound goes up by at most O(#attribute errors).



Notes

Winnow is more general: It can learn the class of linear threshold
functions f (x) = 1 if

∑
i aixi ≥ b for non-negative integers

a1, . . . , an, b.

An r -OR corresponds to the case when b = 1 and ai = 1 for the r
relevant variables and 0 for others.

Encodes other important functions as well. Read Littlestone’s
paper linked at the web page.



Predicting from Expert Advice

I Think of N experts giving advice to you. (Expert = someone with
an opinion, not necessarily someone who knows anything.) There
doesn’t have to be a perfect expert.

I Want to do nearly as well as the best expert in hindsight.

I Can view each expert as a different f ∈ C .

Example: We want to predict the stock market.

Expert 1 Expert 2 Expert 3 . . . Expert N truth
down up up . . . down up
down down up . . . down down

. . . . . .

If one expert is perfect, can get at most log N mistakes with halving

algorithm. What if none is perfect? Can we do nearly as well as the best

one in hindsight?



Simple Strategy: Iterated Halving

I Run halving, but restart every time we’ve crossed off all experts.

I Makes at most (log N)(m + 1) mistakes, where m is the number of
mistakes made by the best expert in hindsight.

I Seems wasteful. We keep forgetting everything we’ve learned. Can
we do better?



Weighted Majority Algorithm

Making a mistake shouldn’t disqualify an expert. Instead of crossing off,
just lower the expert’s weight.

Algorithm:

I Start with all experts having weight 1: w1 = w2 = . . . = wN = 1

I Predict based on weighted majority vote: Output 1 if∑
i :xi=1

wi ≥
∑

i :xi=0

wi ,

otherwise output 0.

I Penalize mistakes by cutting weight in half. If expert i made a
mistake, set wi ← wi/2; otherwise, keep the weight unchanged.



Weighted Majority Algorithm: Analysis

Theorem: The number of mistakes M made by the Weighted Majority is
never more than 2.41(m + log N), where m is the number of mistakes
made by the best expert so far.

Proof: W =
∑

i wi = total weight, initially W = N.
After each mistake, at least half of the total weight of experts predicts
incorrrectly, so W goes down by at least a factor of 1/4.
After the algorithm makes M mistakes, we have

W ≤ N(3/4)M .

If the best expert has made m mistakes, its weight is 1/2m and so

W ≥ 1/2m.

Combining gives 1/2m ≤ N(3/4)M . Solving for M:

M ≤ 1

log(4/3)
(m + log N) ≤ 2.41(m + log N).



Next: Randomized Weighted Majority Algorithm

2.41(m + log N) is not so good if the best expert makes a mistake 20%
of the time. Can we do better? Yes.

Instead of taking majority vote, use weights as probabilities. So if 70% of
the weight predicts “yes”, and 30% predicts “no”, pick 70:30.

Intuition: smooth out the worst case.


