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January 29, 2008

(using Zoubin Ghahramani’s tutorial; see the link)



Announcements

1. Homework 1 is out (due Thu, Feb 7, before class). We will go
over the problems at the end of the class.

2. If you have any logistic questions about the class, email me
(even though Cynthia Rudin is listed as an official instructor).



Basics

P(X ) – probability of X

P(X |Y ) – conditional probability of X given Y

P(X ,Y ) – joint probability of X and Y

By definition:

P(X ,Y ) = P(X )P(Y |X ) = P(Y )P(X |Y )

Bayes rule:

P(Y |X ) =
P(X |Y )P(Y )

P(X )

Marginalization:

P(X ) =

∫
P(X ,Y )dY



Bayes Rule applied to Machine Learning

The Bayesian framework:

I Assign prior belief P(p) to every reasonable “guess” p
(p is typically a process generating data; see next slide)

I Upon observing the training data S , evaluate how probable S was
under each p to compute P(S | p) (called the likelihood of S given
p).

I Bayes law gives the posterior probability over “guesses” P(p | S),
which captures everything we have learned from the data:

P(p | S) =
P(S | p)P(p)

P(S)

(decreases as P(S) increases: the more probable S , independently of p,

the less evidence it provides in support of p)



Prior over what?

I Generative: over models of the joint distribution D(X ,Y ) (prior p(Y )
and class-conditional density p(X | Y )), typically in some parametric
form; prior P is defined over the parameters θ.

I Discriminative: over models of the conditional distribution D(Y | X )
(doesn’t require a prior on D(X ))

I Model class selection: over possible model classes, each parameterized by
θ (model class = a distribution over distributions). Posterior for model
class M:

P(M | S) =
P(S | M)P(M)

P(S)

where marginal likelihood is given by

P(S | M) =

Z
P(S | θ,M)P(θ | M)dθ

P(S) =

Z
P(S | M)P(M)dM

I Note on notation: D denotes the true (but unknown) data maker; lower-case p

refers to a model of a data maker; capital P denotes a prior over models; In

Bayesian statistics, p(S) is usually denoted as P(S | p) = P(S | θ).



Predictions

I True Bayesians integrate over the posterior to make predictions:

P(y | S) =

Z
P(y | θ, S)P(θ | S)dθ

I Computational shortcut (use the world with largest posterior): Maximum
a posteriori (MAP) hypothesis =
argmaxθP(h | S) = argmaxθP(S | θ)P(θ).

I Further shortcut: If we assume that all θ are equally probable a priori (in
some class), we only need to consider P(S | θ). Maximum likelihood
(ML) hypothesis = argmaxθP(S | θ).

I The Dutch Book theorem: The most famous justification for the
Bayesian thesis that degrees of belief should satisfy the probability
calculus if we want rational behavior, i.e., should treat our beliefs the
same way we treat probabilities.

(A Dutch Book is a set of bets acceptable to the better, which are bought or

sold at such prices as to always guarantee a net loss to the better, no matter

what the outcome.)



Simple Example (from Mitchell’s book)

I H = {h1, h2}, with h1 = the patient has a certain disease and h2 =
doesn’t.

I Prior: over the entire population, P(h1) = 0.008 and P(h2) = 0.992.

I Likelihoods (lab test result x ∈ {0, 1}):
P(x = 1 | h1) = 0.98 (true positive),
P(x = 0 | h1) = 0.02 (false negative),
P(x = 1 | h0) = 0.03 (false positive),
P(x = 0 | h0) = 0.97 (true negative).

I After observing positive test outcome x = 1, compute posteriors:
P(h1 | x = 1) ∼ P(x = 1 | h1)P(h1) = (0.98)0.008 = 0.0078,
P(h2 | x = 1) ∼ P(x = 1 | h2)P(h2) = (0.03)0.992 = 0.0298 (MAP)

I Normalize to 1 to get the actual probabilities (divide by 0.0078 + 0.0298).



Properties I (informal)

I Handles the small data limit well. If our prior is correct, applying
Bayes law is the optimal thing to do.

I If the observed data set Sn of size n was generated from some true
data distribution given by θ∗, then under some mild conditions, and
if P(θ∗) > 0 (the prior probability of θ∗ is non-zero), the posterior
P(θ | Sn) will converge to the right distribution θ∗ as n→∞.

I If data was generated from some distribution p∗ which cannot be
modelled by any θ, then the posterior will converge to some θ̂
minimizing the KL-divergence KL(p∗, θ̂).



Asymptotic Properties II (informal)

Consider two Bayesians with different priors, P1(θ) and P2(θ), who observe the
same training set Sn of size n.

Assume that both Bayesians agree on the set of possible and impossible values
of θ.

{θ : P1(θ) > 0} = {θ : P2(θ) > 0}

Then, in the limit of n→∞, the posteriors, P1(θ | Sn) and P2(θ | Sn) will

converge.



Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretation of the Marginal Likelihood (“evidence”): The probability that
randomly selected parameters from the prior would generate D.

Model classes that are too simple are
unlikely to generate the data set.

Model classes that are too complex can
generate many possible data sets, so
again, they are unlikely to generate that
particular data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D

Each model distributes unit probability mass over all possible data sets; more probable datasets are near the center

Slide from Zoubin Ghahramani’s tutorial: Notational correspondence: D = S , m = M



Notes

I Computing marginal likelihoods and posteriors can be computationally
difficult (if we marginalize out a number of variables, this can be a very
high dimensional integral).

I There are many approximation methods (Laplace approximation,
Bayesian Information Criterion, variational methods, expectation
propagation, MCMC)—we won’t go there (at least for now).

I Nonparametric models: Parametric models assume some finite set of
parameters θ; the complexity is bounded even if the amount of data is
unbounded. Nonparametric models assume an infinite dimensional θ; the
complexity of the model grows with the amount of data, which makes
them very flexible.



Conclusions

Bayesian methods provide a coherent framework for doing inference under
uncertainty, give a language for specifying priors, and for incorporating
evidence; very flexible

Limitations:

I Hard to come up with a reasonable prior, assumptions are usually wrong.

I Not very automatable, human intensive. Need to put a prior and define a
set of reasonable guesses for the data before observing the data.

I Computationally difficult.



Naive Bayes Classification Algorithm

I Very simple, rarely works well

I Fat Assumption: conditioned on class, attributes are independent:

D(X | Y ) =
Y

i

D(Xi | Y )

I Estimate marginal probabilities D(Y = y) using sample frequences.

I For each label, estimate distribution of the i-th variable D(Xi | Y = y).

I At test time, output label argmaxyD(y | x) using

argmaxy [log D(x | y) + log D(y)] = argmaxy [log D(y) +
X

i

log D(xi | y)]

(where we use empirical estimates in place of probabilities)


