Machine Learning Coms-4771

## Multi-Armed Bandit Problems

Lecture 20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Multi-armed Bandit Problems

The Setting:

- ► *K* arms (or actions)
- Each time t, each arm i pays off a bounded real-valued reward x<sub>i</sub>(t), say in [0, 1].
- ► Each time t, the learner chooses a single arm i<sub>t</sub> ∈ {1,..., K} and receives reward x<sub>it</sub>(t). The goal is to maximize the return.



The simplest instance of the exploration-exploitation problem = + ( = + ) = - o a (

## Bandits for targeting content

Choose the best content to display to the next visitor of your website

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Content options = slot machines
- Reward = user's response (e.g., click on a ad)
- A simplifying assumption: no context (no visitor profiles). In practice, we want to solve contextual bandit problems.

Stochastic bandits: Each arm *i* is associated with some unknown probability distribution with expectation μ<sub>i</sub>. Rewards are drawn iid.

The largest expected reward:  $\mu^* = \max_{i \in \{1,...,K\}} \mathbf{E}[x_i]$ Regret after T plays:

$$\mu^* T - \sum_{t=1}^{l} \mathsf{E}[x_{i_t}(t)]$$

expectation is over the draws of rewards and the randomness in player's strategy

Adversarial (nonstochastic) bandits: No assumption is made about the reward sequence (other than it's bounded). Regret after T plays:

$$\max_{i} \sum_{t=1}^{T} x_i(t) - \sum_{t=1}^{T} \mathbf{E}[x_{i_t}(t)]$$

expectation is only over the randomness in the player's strategy

## Stochastic Bandits: Upper Confidence Bounds Strategy

## UCB

- Play each arm once
- At any time t > K (deterministically) play machine  $i_t$  maximizing

$$\bar{x}_j(t) + \sqrt{\frac{2\ln t}{T_{j,t}}},$$

over  $j \in \{1, \dots, K\}$  where

- $\bar{x}_j$  is the average reward obtained from machine j
- $T_{j,t}$  is the number of times j has been played so far

## UCB

### Intuition:

The second term  $\sqrt{2 \ln t / T_{i,t}}$  is the the size of the one-sided (1 - 1/t)-condifence interval for the average reward (using Chernoff-Hoeffding bounds).



#### Theorem

(Auer, Cesa-Bianchi, Fisher) At time T, the regret of the UCB policy is at most

$$rac{8K}{\Delta^*} \ln T + 5K,$$

where  $\Delta^* = \mu^* - \max_{i: \mu_i < \mu^*} \mu_i$  (the gap between the best expected reward and the expected reward of the runner up). -- ロ > 4 周 > 4 ヨ > 4 ヨ > ヨ り 9 ( )

## Stochastic Bandits: *e*-greedy

## Randomized policy: $\epsilon_t$ -greedy

Parameter: schedule  $\epsilon_1, \epsilon_2, \ldots$ , where  $0 \le \epsilon_t \le 1$ . At each time t

- (exploit) with probability  $1 \epsilon_t$ , play the arm  $i_t$  with the highest current average return
- (explore) with probability  $\epsilon$ , play a random arm

Is there a schedule of  $\epsilon_t$  which guarantees logarithmic regret? Constant  $\epsilon$  causes linear regret. Fix: let  $\epsilon$  go to 0 as our estimates of the expected rewards become more accurate.

#### Theorem

(Auer, Cesa-Bianchi, Fisher) If  $\epsilon_t = 12/(d^2t)$  where  $0 < d \le \Delta^*$ , then the instantaneous regret (i.e., probability of choosing a suboptimal arm) at any time t of  $\epsilon$ -greedy is at most

$$O(\frac{K}{dt}).$$

The regret of  $\epsilon$ -greedy at time T (summing over the steps) is thus at most

$$O(\frac{\Delta^*}{d}K\log T)$$

(using  $\sum_{t=1}^{T} \frac{1}{t} \approx \ln T + \gamma$  where  $\gamma \approx 0.5772$  is the Euler constant).

Practical performance (from Auer, Cesa-Bianchi and Fisher):

• Tuning the UCB: replace  $\sqrt{2 \ln t / T_{i,t}}$  with

$$\sqrt{\frac{\ln t}{T_{i,t}}\min\{1/4, V_{i,t}\}},$$

where  $V_{i,t}$  is an upper confidence bound for the variance of arm *i*. (The factor 1/4 is an upper bound on the variance of any [0, 1] bounded variable.) Performs significantly better in practice.

- ε-greedy is quite sensitive to bad parameter tuning and large differences in response rates. Otherwise an optimally tuned ε-greedy performs very well.
- UCB tuned performs comparably to a well-tuned e-greedy and is not very sensitive to large differences in response rates.

## Nonstochastic Bandits: Recap

- No assumptions are made about the generation of rewards.
- ▶ Modeled by an *arbitrary* sequence of reward vectors  $x_1(t), \ldots, x_K(t)$ , where  $x_i(t) \in [0, 1]$  is the reward obtained if action *i* is chosen at time *t*.
- At step t, the player chooses arm  $i_t$  and receives  $x_{i_t}$ .
- ▶ Regret after *T* plays (with respect to the best single action):

$$\underbrace{\max_{j} \sum_{t=1}^{T} x_{j}(t)}_{G_{max} = reward of the best action in hindsight} - \underbrace{\sum_{t=1}^{T} \mathbf{E}[x_{i_{t}}(t)]}_{expected reward of the player$$

# Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and Schapire)

• Initialization:  $w_i(1) = 1$  for  $i \in \{1, \dots, K\}$ 

• Set 
$$\gamma = \min\{1, \sqrt{\frac{K \ln K}{(e-1)g}}\}$$
, where  $g \ge G_{\max}$ .

For each 
$$t = 1, 2, \ldots$$

Set

$$p_i(t) = (1 - \gamma) rac{w_i}{\sum_{j=1}^K w_j(t)} + rac{\gamma}{K}$$

- Draw  $i_t$  randomly according to  $p_1(t), \ldots, p_K(t)$ .
- Receive reward  $x_{i_t}(t) \in [0,1]$
- For j = 1, ..., K set the estimated rewards and update the weights:

$$\hat{x}_j(t) = egin{cases} x_j(t)/p_j(t) & ext{if } j = i_t \ 0 & ext{otherwise} \ w_j(t+1) = w_j(t) \exp(\gamma \hat{x}_j(t)/\mathcal{K}) \end{cases}$$

Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and Schapire)

Theorem: For any T > 0 and for any sequence of rewards, regret of the player is bounded by

$$2\sqrt{e-1}\sqrt{gK\ln K} \leq 2.63\sqrt{TK\ln K}$$

Observation: Setting  $\hat{x}_{i_t}$  to  $x_{i_t}(t)/p_{i_t}(t)$  guarantees that the expectations are equal to the actual rewards for each action:

$$\mathbf{E}[\hat{x}_j | i_1, \ldots, i_{t-1}] = p_j(t) x_j(t) / p_j(t) = x_j(t),$$

where the expectation is with respect to the random choice of  $i_t$  at time t (given the choices in the previous rounds). So dividing by  $p_{i_t}$  compensates for the reward of actions with small probability of being drawn.

Proof: Let  $W_t = \sum_j w_j(t)$ . We have



use approximation  $1+z \leq e^z$ 

Take logs:

$$\ln \frac{W_{T+1}}{W_t} \leq \frac{\gamma}{(1-\gamma)K} x_{i_t}(t) + (e-2) \frac{(\gamma/K)^2}{1-\gamma} \sum_{i=1}^K \hat{x}_i(t)$$

Summing over *t*,

$$\ln \frac{W_{\mathcal{T}+1}}{W_1} \leq \frac{\gamma/\mathcal{K}}{(1-\gamma)} \underbrace{\widetilde{\mathcal{G}_{\mathsf{exp}\,3}}}_{\mathsf{Factor}} + \frac{(e-2)(\gamma/\mathcal{K})^2}{1-\gamma} \sum_{t=1}^{\mathcal{T}} \sum_{i=1}^{\mathcal{K}} \hat{x}_i(t)$$

Now, for any fixed arm j

$$\ln \frac{W_{T+1}}{W_1} \ge \ln \frac{w_j(T+1)}{W_1} = \ln \frac{w_j(1)}{W_1} + (\gamma/K) \sum_{t=1}^T \hat{x}_j(t).$$

Combine with the upper bound,

$$\frac{\gamma}{K}\sum_{t=1}^{T}\hat{x}_{j}(t) - \ln K \leq \frac{\gamma/K}{1-\gamma}G_{\exp 3} + \frac{(e-2)(\gamma/K)^{2}}{1-\gamma}\sum_{t=1}^{T}\sum_{i=1}^{K}\hat{x}_{i}(t)$$

Solve for  $G_{exp 3}$ :

$$G_{\exp 3} \ge (1-\gamma) \sum_{t=1}^{T} x_j(t) - \frac{\kappa}{\gamma} \ln \kappa \cdot (1-\gamma) - (e-2)(\gamma/\kappa) \sum_{t=1}^{T} \sum_{i=1}^{\kappa} \hat{x}_i(t)$$

Take expectation of both sides wrt distribution of  $i_1, \ldots, i_T$ :

$$\mathbf{E}[G_{\exp 3}] \geq (1-\gamma) \sum_{t=1}^{l} x_j(t) - \frac{K}{\gamma} \ln K - (e-2) \frac{\gamma}{K} K G_{\max}.$$

Since *j* was chosen arbitrarily, it holds for  $j = \max$ :

$$\mathsf{E}[G_{\mathsf{exp}\,\mathsf{3}}] \geq (1-\gamma) \mathsf{G}_{\mathsf{max}} - rac{\mathsf{K}}{\gamma} \ln \mathsf{K} - (e-2) \gamma \mathsf{G}_{\mathsf{max}}$$

Thus

$$G_{\max} - \mathbf{E}[G_{\exp 3}] \leq rac{K \ln K}{\gamma} + (e-1)\gamma G_{\max}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The value of  $\gamma$  in the algorithm is chosen to minimize the regret.

Comments:

- ▶ Don't need to know *T* in advance (guess and double)
- Possible to get high probability bounds (with a modified version of Exp3 that uses upper confidence bounds)
- Stronger notions of regret. Compete with the best in a class of strategies.
- The difference between √T bounds and log T bounds is a bit misleading. The difference is not due to the adversarial nature of rewards but in the asymptotic quantification! log T bounds hold for any fixed set of reward distributions (so Δ\* is fixed **before** T, not after).