Machine Learning Coms-4771

Multi-Armed Bandit Problems

Lecture 20

Multi-armed Bandit Problems

The Setting:

- K arms (or actions)
- Each time t, each arm i pays off a bounded real-valued reward $x_{i}(t)$, say in $[0,1]$.
- Each time t, the learner chooses a single arm $i_{t} \in\{1, \ldots, K\}$ and receives reward $x_{i_{t}}(t)$. The goal is to maximize the return.

$$
\begin{array}{llllll}
\mathrm{t}=1 & 0.3 & 0.2 & 0.8 & 0.4 & 0.0 \\
\mathrm{t}=2 & 0.7 & 0.1 & 0.9 & 0.5 & 0.1 \\
\mathrm{t}=3 & 0.5 & 0.3 & 0.7 & 0.3 & 0.3
\end{array}
$$

The simplest instance of the exploration-exploitation problem

Bandits for targeting content

- Choose the best content to display to the next visitor of your website
- Content options = slot machines
- Reward $=$ user's response (e.g., click on a ad)
- A simplifying assumption: no context (no visitor profiles). In practice, we want to solve contextual bandit problems.
- Stochastic bandits: Each arm i is associated with some unknown probability distribution with expectation μ_{i}. Rewards are drawn iid.
The largest expected reward: $\mu^{*}=\max _{i \in\{1, \ldots, K\}} \mathbf{E}\left[x_{i}\right]$ Regret after T plays:

$$
\mu^{*} T-\sum_{t=1}^{T} \mathbf{E}\left[x_{i_{t}}(t)\right]
$$

expectation is over the draws of rewards and the randomness in player's strategy

- Adversarial (nonstochastic) bandits: No assumption is made about the reward sequence (other than it's bounded). Regret after T plays:

$$
\max _{i} \sum_{t=1}^{T} x_{i}(t)-\sum_{t=1}^{T} \mathbf{E}\left[x_{i_{t}}(t)\right]
$$

expectation is only over the randomness in the player's strategy

Stochastic Bandits: Upper Confidence Bounds Strategy

UCB

- Play each arm once
- At any time $t>K$ (deterministically) play machine i_{t} maximizing

$$
\bar{x}_{j}(t)+\sqrt{\frac{2 \ln t}{T_{j, t}}},
$$

over $j \in\{1, \ldots, K\}$ where

- \bar{x}_{j} is the average reward obtained from machine j
- $T_{j, t}$ is the number of times j has been played so far

UCB

Intuition:

The second term $\sqrt{2 \ln t / T_{j, t}}$ is the the size of the one-sided ($1-1 / t$)-condifence interval for the average reward (using Chernoff-Hoeffding bounds).

Theorem
(Auer, Cesa-Bianchi, Fisher) At time T, the regret of the UCB policy is at most

$$
\frac{8 K}{\Delta^{*}} \ln T+5 K
$$

where $\Delta^{*}=\mu^{*}-\max _{i: \mu_{i}<\mu^{*}} \mu_{i}$ (the gap between the best expected reward and the expected reward of the runner up).

Stochastic Bandits: ϵ-greedy

Randomized policy: ϵ_{t}-greedy
Parameter: schedule $\epsilon_{1}, \epsilon_{2}, \ldots$, where $0 \leq \epsilon_{t} \leq 1$.
At each time t

- (exploit) with probability $1-\epsilon_{t}$, play the arm i_{t} with the highest current average return
- (explore) with probability ϵ, play a random arm

Is there a schedule of ϵ_{t} which guarantees logarithmic regret? Constant ϵ causes linear regret. Fix: let ϵ go to 0 as our estimates of the expected rewards become more accurate.

Theorem
(Auer, Cesa-Bianchi, Fisher) If $\epsilon_{t}=12 /\left(d^{2} t\right)$ where $0<d \leq \Delta^{*}$, then the instantaneous regret (i.e., probability of choosing a suboptimal arm) at any time t of ϵ-greedy is at most

$$
O\left(\frac{K}{d t}\right) .
$$

The regret of ϵ-greedy at time T (summing over the steps) is thus at most

$$
O\left(\frac{\Delta^{*}}{d} K \log T\right)
$$

(using $\sum_{t=1}^{T} \frac{1}{t} \approx \ln T+\gamma$ where $\gamma \approx 0.5772$ is the Euler constant).

Practical performance (from Auer, Cesa-Bianchi and Fisher):

- Tuning the UCB: replace $\sqrt{2 \ln t / T_{i, t}}$ with

$$
\sqrt{\frac{\ln t}{T_{i, t}} \min \left\{1 / 4, V_{i, t}\right\}}
$$

where $V_{i, t}$ is an upper confidence bound for the variance of arm i. (The factor $1 / 4$ is an upper bound on the variance of any $[0,1]$ bounded variable.) Performs significantly better in practice.

- ϵ-greedy is quite sensitive to bad parameter tuning and large differences in response rates. Otherwise an optimally tuned ϵ-greedy performs very well.
- UCB tuned performs comparably to a well-tuned ϵ-greedy and is not very sensitive to large differences in response rates.

Nonstochastic Bandits: Recap

- No assumptions are made about the generation of rewards.
- Modeled by an arbitrary sequence of reward vectors $x_{1}(t), \ldots, x_{K}(t)$, where $x_{i}(t) \in[0,1]$ is the reward obtained if action i is chosen at time t.
- At step t, the player chooses arm i_{t} and receives $x_{i_{t}}$.
- Regret after T plays (with respect to the best single action):

$$
\underbrace{\max _{j} \sum_{t=1}^{T} x_{j}(t)}-\underbrace{\sum_{t=1}^{T} \mathbf{E}\left[x_{i_{t}}(t)\right]}
$$

$G_{\max }=$ reward of the best action in hindsight expected reward of the player

Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and Schapire)

- Initialization: $w_{i}(1)=1$ for $i \in\{1, \ldots, K\}$
- Set $\gamma=\min \left\{1, \sqrt{\frac{K \ln K}{(e-1) g}}\right\}$, where $g \geq G_{\text {max }}$.
- For each $t=1,2, \ldots$
- Set

$$
p_{i}(t)=(1-\gamma) \frac{w_{i}}{\sum_{j=1}^{K} w_{j}(t)}+\frac{\gamma}{K}
$$

- Draw i_{t} randomly according to $p_{1}(t), \ldots, p_{K}(t)$.
- Receive reward $x_{i_{t}}(t) \in[0,1]$
- For $j=1, \ldots, K$ set the estimated rewards and update the weights:

$$
\begin{aligned}
& \hat{x}_{j}(t)= \begin{cases}x_{j}(t) / p_{j}(t) & \text { if } j=i_{t} \\
0 & \text { otherwise }\end{cases} \\
& w_{j}(t+1)=w_{j}(t) \exp \left(\gamma \hat{x}_{j}(t) / K\right)
\end{aligned}
$$

Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and Schapire)

Theorem: For any $T>0$ and for any sequence of rewards, regret of the player is bounded by

$$
2 \sqrt{e-1} \sqrt{g K \ln K} \leq 2.63 \sqrt{T K \ln K}
$$

Observation: Setting $\hat{x}_{i_{t}}$ to $x_{i_{t}}(t) / p_{i_{t}}(t)$ guarantees that the expectations are equal to the actual rewards for each action:

$$
\mathbf{E}\left[\hat{x}_{j} \mid i_{1}, \ldots, i_{t-1}\right]=p_{j}(t) x_{j}(t) / p_{j}(t)=x_{j}(t)
$$

where the expectation is with respect to the random choice of i_{t} at time t (given the choices in the previous rounds). So dividing by $p_{i_{t}}$ compensates for the reward of actions with small probability of being drawn.

Proof: Let $W_{t}=\sum_{j} w_{j}(t)$. We have

$$
\begin{aligned}
& \frac{W_{t+1}}{W_{t}}=\sum_{i=1}^{K} \frac{\overbrace{w_{i}(t+1)}^{W_{t}}}{w_{i}(t) \exp \left(\gamma \hat{x}_{i}(t) / K\right)}=\sum_{i=1}^{K} \frac{p_{i}(t)-(\gamma / K)}{1-\gamma} \exp \left(\gamma \hat{x}_{i}(t) / K\right) \\
& \leq \sum_{i=1}^{K} \frac{p_{i}(t)-(\gamma / K)}{1-\gamma}\left(1+\frac{\gamma}{k} \hat{x}_{i}(t)+(e-2) \frac{\gamma^{2}}{k^{2}} \hat{x}_{i}^{2}(t)\right) \\
&\leq \overbrace{i=1}^{K} \frac{\left(u s i n g ~ e^{x} \leq 1\right.}{K} \leq x+(e-2) x^{2} \text { for } x \in[0,1]) \\
& \leq 1+\left[\frac{p_{i}(t)-(\gamma / k)}{1-\gamma}+\sum_{i=1}^{K} \frac{p_{i}(t) \gamma \hat{x}_{i}(t)}{(1-\gamma) K}+\frac{(e-2) \gamma^{2}}{(1-\gamma) K^{2}} \sum_{i} p_{i}(t) \hat{x}_{i}^{2}(t)\right. \\
& {[\begin{array}{l}
(1-\gamma) K \\
\text { the only non-zero term }
\end{array} \underbrace{x_{i t}(t)}+(e-2) \frac{(\gamma / K)^{2}}{1-\gamma} \sum_{i=1}^{K} \hat{x}_{i}(t)] }
\end{aligned}
$$

use approximation $1+z \leq e^{z}$

Take logs:

$$
\ln \frac{W_{T+1}}{W_{t}} \leq \frac{\gamma}{(1-\gamma) K} x_{i_{t}}(t)+(e-2) \frac{(\gamma / K)^{2}}{1-\gamma} \sum_{i=1}^{K} \hat{x}_{i}(t)
$$

Summing over t,

$$
\ln \frac{W_{T+1}}{W_{1}} \leq \frac{\gamma / K}{(1-\gamma)} \overbrace{G_{\exp 3}}^{\text {reward of } \operatorname{Exp} 3}+\frac{(e-2)(\gamma / K)^{2}}{1-\gamma} \sum_{t=1}^{T} \sum_{i=1}^{K} \hat{x}_{i}(t)
$$

Now, for any fixed arm j

$$
\ln \frac{W_{T+1}}{W_{1}} \geq \ln \frac{w_{j}(T+1)}{W_{1}}=\ln \frac{w_{j}(1)}{W_{1}}+(\gamma / K) \sum_{t=1}^{T} \hat{x}_{j}(t)
$$

Combine with the upper bound,

$$
\frac{\gamma}{K} \sum_{t=1}^{T} \hat{x}_{j}(t)-\ln K \leq \frac{\gamma / K}{1-\gamma} G_{\exp 3}+\frac{(e-2)(\gamma / K)^{2}}{1-\gamma} \sum_{t=1}^{T} \sum_{i=1}^{K} \hat{x}_{i}(t)
$$

Solve for $G_{\text {exp } 3}$:

$$
G_{\exp 3} \geq(1-\gamma) \sum_{t=1}^{T} x_{j}(t)-\frac{K}{\gamma} \ln K \cdot(1-\gamma)-(e-2)(\gamma / K) \sum_{t=1}^{T} \sum_{i=1}^{K} \hat{x}_{i}(t)
$$

Take expectaion of both sides wrt distribution of i_{1}, \ldots, i_{T} :

$$
\mathbf{E}\left[G_{\exp 3}\right] \geq(1-\gamma) \sum_{t=1}^{T} x_{j}(t)-\frac{K}{\gamma} \ln K-(e-2) \frac{\gamma}{K} K G_{\max } .
$$

Since j was chosen arbitrarily, it holds for $j=\max$:

$$
\mathbf{E}\left[G_{\exp 3}\right] \geq(1-\gamma) G_{\max }-\frac{K}{\gamma} \ln K-(e-2) \gamma G_{\max }
$$

Thus

$$
G_{\max }-\mathbf{E}\left[G_{\exp 3}\right] \leq \frac{K \ln K}{\gamma}+(e-1) \gamma G_{\max }
$$

The value of γ in the algorithm is chosen to minimize the regret.

Comments:

- Don't need to know T in advance (guess and double)
- Possible to get high probability bounds (with a modified version of Exp3 that uses upper confidence bounds)
- Stronger notions of regret. Compete with the best in a class of strategies.
- The difference between \sqrt{T} bounds and $\log T$ bounds is a bit misleading. The difference is not due to the adversarial nature of rewards but in the asymptotic quantification! $\log T$ bounds hold for any fixed set of reward distributions (so Δ^{*} is fixed before T, not after).

