
Machine Learning Coms-4771

Decision Tree Learning
Lecture 2

January 28, 2008

Two Types of Supervised Learning Problems (recap)
Feature (input) space X , label (output) space Y . Unknown distribution D over
X × Y .

Classification: Given a set of labeled training examples (x1, y1), . . . , (xn, yn)
from D, find a mapping f : X → Y minimizing

eD (f) = Pr(x,y)∼D [f (x) 6= y] (zero-one loss)

Regression: Same but find f minimizing

LD (f) = E(x,y)∼D (f (x)− y)2 (squared loss)

or
`D (f) = E(x,y)∼D |f (x)− y | (absolute loss)

Note: If Y = {0, 1} (binary classification), e(f) = `(f). (If D is clear from
context, we drop the subscript.)

Training error (also called empirical risk or empirical loss):

b̀(f) =
1

n

nX
i=1

|f (xi)− yi |, bL(f) =
1

n

nX
i=1

(f (xi)− yi)
2

The hat notation is used for empirical estimates based on limited samples.

Decision Tree Learning

Each node in T corresponds
to a subset of X (defined by
the set of constraints on the
path from the root). In a
similar way, T defines a
partition of the training set.

Each internal node
corresponds to a test typically
involving a single feature (also
called attribute).

I Learning = process of cutting up the input space
X into a set of cells, and assigning (typically
constant) predictions to each cell.

I Tree T = partition of X .

I Prediction on each cell q depends on the loss
function:
Zero-one loss: most frequent class

ŷq = argmaxk

X
(xi ,yi)∈Rq

1(yi = k),

where Rq is the set of training examples in q.
1(·) is the indicator function, which is 1 when its argument is 1

and 0 otherwise.

Absolute loss: ŷq = sample median of training
data (sort the labels of examples in Rq and take
the median label)
Squared loss: sample mean

ŷq =
1

|Rq |
X

(xi ,yi)∈Rq

yi .

I The final classifier is given by
f̂T (x) =

P
q 1(x ∈ Rq) · ŷq

Emprical Risk Minimization

Natural goal: Find T (in some tree class F , e.g., the set of all trees with at most

a certain number of leaves) minimizing the empirical loss 1
n

Pn
i=1 |f̂T (xi)− yi |α

over the training set (α = 1 for absolute loss and α = 2 for squared loss).

Two problems with this:

I We can still overfit the training set (due to noise in the data and training set

not being large enough for F). In the extreme case, each training example
can end up is in its own cell: empirical loss = 0, but we haven’t learned
anything. (A bit more formally, a hypothesis T ∈ F is said to overfit the training set if there exists

some T ′ ∈ F such that h has a smaller empirical loss than h′, but h′ has a smaller expected loss on the

entire distribution of instances.)

I The optimization problem is computationally infeasible for general F .

We can avoid both problems by constructing T greedily, top down:

I Choose a test A.

I Create a child for each outcome of A and sort training examples into
subtrees according to the outcome.

I Recurse on each subtree (stop early if a stopping criteria is satisfied).

I Post-prune the tree.

Choosing tests: Entropy (as a measure of node impurity)

I Let R be the set of training examples reaching some cell (current leaf in
the tree). Entropy of R = uncertainty still remaining about the class of
instance x knowing that x is in the cell:

H(R) = −
X
k∈Y

D(k | R) log2 D(k | R),

where D(k | R) is the probability that a random example from D is in
class k, conditioned on being in R. Since we don’t know D, we estimate
D(k | R) as

1

|R|
X

(xi ,yi)∈R

1(yi = k).

I Entropy is the expected number of bits needed to encode class of a
randomly drawn member of R (under optimal, shortest length code which
assigns − log2 p bits to message with probability p).

Entropy and Information Gain

binary case (x axis =

probability that the class is 1)

I H(R) measures the “impurity” of R. If all
examples in R belong to the same class,
H(R) = 0.

I Sanity check: As we travel down the tree, the
uncertainty should decrease.

I Imagine splitting R by performing a test A
with K possible outcomes, resulting in
respective subsets R1,. . . ,RK .

I If the outcome of A turned out to be j , the
reduction of uncertainty about the class
would be H(R)− H(Rj).

Since we don’t know the outcome of A, we can only talk about the expected
reduction of uncertainty due to performing A:

Gain(R, A) = H(R)−
1

K

24 KX
j=1

p(Rj)H(Rj)

35 ,

where p(Rj) is the probability, according to D, that the outcome of A

(conditioned on being in R) is j , estimated using |Rj |/|R|.

Information Gain

I Choose test A to maximize Gain(R,A).

I Problem: Entropy is always decreased by having more classes, so Gain
prefers attributes with many values (extreme cases: unique ids, no
attribute can do better since the infogain is H(R)).

I Quinlan’s C4.5 solution: Divide Gain(R,A) by a correction factor

−
X

j

p(Rj) log p(Rj),

with p(Rj) estimated as |Rj |/|R| as before.

I Correction factor = “entropy” of A’s partition of R: the higher the factor,
the lower the normalized gain.

Example
Training set R:

(A0, A1, A2, A3) label y
(1, 0, 0, 0) 0
(2, 0, 0, 1) 0
(3, 0, 1, 0) 0
(4, 0, 1, 1) 0
(5, 1, 0, 0) 0
(6, 1, 0, 1) 1
(7, 1, 1, 0) 0
(8, 1, 1, 1) 1

Resulting tree:

Which single test should be performed first?

I The initial uncertainty about y is

H(R) =−(6/8) log2(6/8)| {z }
6 examples with label 0

−(2/8) log2(2/8)| {z }
2 with label 1

= 0.81

I Next, we calculate the reduction of uncertainty due to
performing test A1 first. The two outcomes, A1 = 0
and A1 = 1, result in the partition

RA1
i = {(x , y) ∈ R : A1 = i}, i ∈ {0, 1} with

H(RA1
0) = −1 log2 1− 0 log2 0 = 0, H(RA1

1) = −(2/4) log2(2/4)− (2/4) log2(2/4) =

1. Since |RA1
0 | = |RA1

1 | = |R|/2, the average uncertainty after performing A1 is

0.5HA1
(RA1

0) + 0.5HA1
(RA1

1) = 0.5. Thus Gain(R, A1) = 0.81− 0.5 = 0.31.
Similar calculations show that Gain(R, A3) = Gain(R, A1), but Gain(R, A2) = 0. The
three corresponding correction factors are all 1.

I Suppose that attribute A0 can have 8 possible outcomes, and we are
entertaining an 8-way split. We have Gain(R, A0) = H(R)− 0 = H(R), but we
need to divide by the correction factor −(8/8) log2(1/8) = 3, so the normalized
gain is 0.81/3 = 0.27. Thus our greedy algorithm would select either A1 or A3.
Suppose that we select A1. Now we recurse on the two subtrees corresponding

to RA1
0 and RA1

1 , selecting A3 on both sides. The decision tree implements
A1 AND A3.

Handling different types of attributes

I How to handle a continuous valued attribute A? For a split point s, define a
boolean attribute BA, which is 1 if A < s and 0 otherwise. To find the best split
point s for A, find s maximizing Gain(R, BA).
Sort the examples in R based on the value of A. Identify adjacent examples that
differ in their labels. Splits that are midway between the corresponding values of
A define a sufficient set of candidates. Compute the information gain of each
candidate to find the best split.

I Concern with multiway splits: the data is fragmented too quickly (leading to
overfitting). Sometimes, it’s better to use boolean indicator variables for each
value of a multi-valued attribute A. Thus instead of using A ∈ {1, . . . , k}, use

variables B j
A (with B j

A = 1 when A = j and 0 otherwise), for j ∈ {1, . . . , k}.
I Handling missing values for attribute A (being evaluated for infogain): Simple

strategy: estimate the missing value as the most common among training
examples R reaching the node (perhaps conditioned on having the same label).

More advanced strategy (used in C4.5): Get the empirical probability
distribution on the values of A based on examples in R. Say, the fraction of
examples in R with A(x) = 1 is 0.6, and with A(x) = 0 is 0.4. Then a fractional
0.6 of instance x with a missing value of A goes into RA

1 and 0.4 goes into RA
0 .

Same fractioning strategy is used at test time if the value of A is missing: label
= most probable label computed by summing the weights of the instance
fragments classified at different leaf nodes.

Bias-Variance Tradeoff: Estimation and Approximation
Errors

I Given a set of n training examples from D, let f̂T denote the tree
with empirical median fit on each cell (sort the training examples in

each cell according to their labels, and use the label of the median

example to label any test example falling into the cell).

I Let fT denote the tree with true median fit on each cell, if we knew
D.

Decompose the expected loss of f̂T (where the expectation is over the
draw of the training set form D):

E[`(f̂T)] = {E[`(f̂T)]− `(fT)}︸ ︷︷ ︸
Estimation error “variance”

+ {`(fT)− f ∗}︸ ︷︷ ︸
Approximation error, “bias”

+ f ∗︸︷︷︸
noise

Here f ∗ = minf `(f) is the smallest achievable ` on D.

Estimation and Approximation Errors
Recap: Given a set of n data points from the underlying distribution D, we
want to find a function f̂ ∈ F which minimizes the expected loss ` on D
(where the expectation is over the draw of the training set). (On the previous

slide, F is the set of all classifiers corresponding to tree structure T . It can also be the

set of all tree classifiers with at most a certian number of leaves.)

The decomposition on the previous slide says that the expected loss of a
learning algorithm on a training set of size n has three components:

I A approximation error measuring the loss due to restricting the search to
F , i.e., it measures the mismatch between F and D.

I A estimation error measuring how much the chosen f̂ varies with the
draw of the training set of size n. In other words, how well the learned f̂
performs on average, compared to the best possible f which could have
been chosen from the class F .

I A term measuring the smallest achievable loss on D (this term is
sometimes referred to as the intrinsic target noise).

I By allowing F to be complex, we can decrease the approximation error,
but at the cost of incurring a large estimation error (overfitting the data).
If F is very simple, the approximation error will be large but we can make
the estimation error small.

Estimation Error

I Let’s look at the estimation error:

ES [`(f̂T)]− `(fT) = ES,(x,y)|f̂T (x)− y | − E(x,y)|fT (x)− y |
≤ ES,(x,y)|f̂T (x)− y − fT (x) + y | = ES,(x,y)|f̂T (x)− fT (x)|

using the triangle inequality |a− b| ≥ |a| − |b| and linearity of
expectation. (In the E notation, (x , y) is a random example drawn
from D and S is a set of n training examples drawn independently
from D.)

I Thus the estimation error (“variance”) of f̂T is at most
E|f̂T (x)− fT (x)|

I Similarly, for regression we have var(f̂T) = E(f̂T (x)− fT (x))2.

Overfitting

I Bias-variance tradeoff:
I detailed/flexible partition = small bias, but high variance (too

many degrees of freedom)
I coarse partition = large bias, poor approximation but lower

variance (more stable)

I Since expected loss is lower bounded by variance, it is
unreasonable to drive empirical error lower than variance

Controlling Overfitting

I Select a tree/partition which minimizing the empirical error +
variance:

f̂ = argminT [ˆ̀(f̂T) + var(f̂T)]

I Variance is proportional to the complexity of the partition, so
the strategy is called complexity regularization

I Empirical error is easy to compute, but we don’t know the
variance. Use bounds on the variance.

I For leaf q, E|f̂q(x)− fq(x)| = O(1/
√

nq). (For regression,
variance scales as O(1/nq).)

Controlling Overfitting: Simpler strategies

I Pre-pruning (early stopping): Don’t split if the split is
insignificant. Can use cross-validation: if the cross-validation
error increases as a consequence of a node split, then don’t
split!

Problems: Hard to evaluate split without seeing which splits it
can lead to (lookahead). Some attributes are useful only in
combination with other attributes (XOR).

I Post-pruning: grow the tree to its full size and then prune
away subtrees until cross-validation accuracy no longer
increases.

Conclusion

I Decision tree algorithms are well automated, quite fast and easy to
implement.

I There are learning problems which can not be easily solved by
splitting on single attributes, but which are solvable (diagonal splits
like “Is xi < xj ?”)

I May not be the best performer, but consistently good and very
popular. Bagged or boosted decision trees work pretty well.
Bagging: train many trees with different random samples and
average predictions.

I Often said to be interpretable, but trees grown in practice
(especially when bagged or boosted to gain performance) are not so
easy to interpret.

