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 Active Learning Recap

● The learner chooses which examples it wants 
labeled

● The learner works harder in order to use fewer 
labeled examples



  

Basic setting

[Cohn, Atlas, and Ladner, 1992]

Underlying distribution P on the (x,y) data.

Learner has two abilities:
-- draw an unlabeled sample from the distribution
-- ask for a label of one of these samples

The error of any classifier h is measured on distribution P:
err(h) = P(h(x) ≠ y)

Special case to simplify matters: assume the data is separable, ie. some 
concept h 2 H labels all points perfectly.



  

Why hope for success?
Simple hypothesis class H: thresholds on the real line
H = {hw: w in [0,1]}, where hw(x) = 1 if x>w; 0 otherwise
Data is linearly separable (there is a perfect threshold)

Passive learning needs roughly m = O(1/ε) random labeled 
points to reach a hypothesis with error rate <ε

Binary search needs just log(m) = O(log 1/ε) labels                    
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An exponential improvement!



  

For linear separators in R1, need just log 1/ε labels.
But when H = {linear separators in R2}: some target hypotheses require 1/ε 
labels to be queried! h3h2

h0

h1

ε fraction of distribution

Need 1/ε labels to distinguish 
between h0, h1, h2, …, h1/ε !

Consider any distribution over 
the circle in R2.

Bad news



  

Basic Notions

  Current version space Hi --- part of H still 
under consideration by the algorithm

Region of uncertainty Ri --- region of the data 
space about which there is still some 
disagreement within Hi
 Volume of Ri :
DisagreeP(Hi) = Prx~P [ ∃ h1, h2 ∈ Hi : h1(x) ≠ h2(x)]



  

Region of uncertainty

current version space
Suppose data lies on 
unit circle in R2; 
hypotheses are 
linear separators.

(spaces X, H 
superimposed)

region of uncertainty in 
data space

In the realizable case, current version space is the portion of H 
consistent with labels so far.



  

Uncertainty sampling

version 
space

First idea:  Try to rapidly reduce the volume of the 
version space

Problem:   ignores the data distribution --- reducing the 
volume may have little effect on the diameter (and thus 
error)!

➊

➋

Diameter

Distance measure on H:  d(h, h') = Prx∼P[ h(x) ≠ h'(x)] 

What we really want to cut is the diameter with respect to d.



  

Query by Committee

Label bound: For H = {linear separators in Rd}, P = uniform 
distribution, just d log 1/ε labels to reach a hypothesis with 
error < ε. (Compare to O(d/) in the supervised setting.)

[Seung, Opper, Sompolinsky '92; Freund et al '97]

Main idea:  Sample an unlabeled point; query if two random 
hypotheses h, h' in Hi disagree on the label.  

1)  The stronger the disagreement on x, the higher the 
probability of querying it (the higher the expected reduction 
in volume).

2)  The probability of querying when h and h' are drawn is 
d(h,h').

Elegant scheme which decreases volume in a manner which is 
sensitive to the data distribution.



  

Query by committee

By random walk!
2. Ball walk
3. Hit-and-run

[Gilad-Bachrach, Navot, Tishby 2005]

Implementation: need to randomly pick h according to (π, Ht).

How do you pick a 
random point from a 
convex body?

Ht



  

Online active learning

Online algorithms:
see unlabeled data streaming by, one point at a time
can query current point’s label, at a cost
can only maintain current hypothesis (memory bound)

[Dasgupta, Kalai, Monteleoni 2005]: An active version of the 
perceptron algorithm.

Guarantee: In the realizable case, for linear separators under the 
uniform distribution, label complexity is d log 1/ε.



  

What if there is noise?
Need a robust active learner 

A few mistakes can 
induce a large error.
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In fact, Active Learning is noise-seeking:

Active learners quickly go to the decision boundary and that's 
where noise often is.

Why?---mismatch between the input distribution and the 
hypotheses class; large conditional noise rate

Active learners are sensitive to noise since they try to 
minimize redundancy



  

Setup: Agnostic Learning

Hypothesis class:   H
Goal:  Find h ∈ H with

Arbitrary distribution  D  over  X×Y

errD (h) ≤ opt + ε

errD (h) = Pr(x,y)~D [h(x) ≠ y]

opt = min errD (h)

Noise rate



  

Ideally, we don't want to make 
any assumptions about

the mechanism
producing noise!



  

Why is the agnostic case difficult?

Separable case:  
   We don't care about the query distribution we induce.  

We have a promise that there is a hypothesis in H 
consistent with all, so any inconsistent hypothesis can be 
immediately discarded.

Agnostic case:  
   If the query distribution is far from the input 

distribution, a hypothesis that performs badly on the 
query points may be the best hypothesis in the class!



  

Q:  Is Robust Active Learning 
possible?

A:  Yes, sometimes.

Algorithm A2 (for Agnostic Active)
[Balcan, Beygelzimer, Langford'06]



  
Instance and hypothesis spaces, superimposed

True unobserved error rates

Step 1: Sample and query m examples from D (we want m 
large enough to cut DisagreeD(H) in half)

A2 in Action (H = thresholds on the line)

opt

hw

err(hw)



  

Step 2:  Estimate bounds on the error rates of 
surviving hypotheses (initially all of H)

Min upper bound



  

Step 3:  Discard those hypotheses whose lower bound 
on the error is larger than the smallest upper bound.

Eliminate examples on which the remaining hypotheses 
agree

New region of uncertainty Ri



  

Recurse with the new Hi, Di and Ri.

Di = D restricted to Ri

All hypotheses h in Hi agree on X-Ri, so we can stop once
errDi(h)DisagreeD(Hi) is approximated to precision , or

DisagreeD(Hi)(min UB – min LB) ≤ 



  

Theorem (thresholds, low noise):  For any  input 
distribution, any  and opt < /16,  label 
complexity is O(log1/).

Theorem (thresholds, high noise): If opt > , label 
complexity is  O(opt2/2).

Theorem (Linear separators in Rd, low noise):  For 
distributions within multiplicative factor of the 

uniform, any  and opt <            ,  label complexity 

is O(d2log1/).



  

Linear separators in Rd

Uniform distribution:

Concentrated near 
the equator +

-


