
Kernels



Perceptron in action
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10 7 w = x(1) – x(7)

Sparse 

representation:

[(1,1), (7,-1)]

w = 0

while some (x,y) is 
misclassified:

w = w + yx



When does this fail?

When data is not linearly separable.

[1] Systematic deviation [2] Noise
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Systematic inseparability

Actual decision boundary is 
quadratic.

Quick fix: in addition to 
regular features 

x = (x1,x2,…,xd), 
add in extra features

x1
2,x2

2,…,xd
2,

x1x2,x1x3,…,xd-1xd

The new, enhanced data vectors are of the form
(x)=

(1,2x1,…, 2xd,x1
2,…,xd

2,2x1x2,2x1x3,…,2xd-1xd)
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Adding new features
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Boundary is something like

x1 = x2
2 + 5.

This is quadratic in

x = (1,x1,x2) 

but linear in

(x)=(1,2x1, 2x2,x1
2,x2

2,2x1x2)

By embedding the data in a higher-dimensional feature 
space, we can keep using a linear classifier!



Perceptron revisited

Learning in the higher-dimensional feature space: map each x
onto (x)and then run the regular perceptron; that is:

w = 0

while some  y(w·(x)) ≤ 0:

w = w + y (x)

Everything works as before; final w is a weighted sum of 
various (x).

Problem: number of features has now increased dramatically.

For instance, if x 2 R1,000 then (x) 2 R1,000,000 !



The kernel trick
[Aizenman, Braverman, Rozonoer, 1964] 

No need to explicitly write out either w or (x)!

[1] Keep w in sparse form

If w = (say) a1 (x(1)) + a2 (x
(20)) + a3 (x

(31)),

store it as a list, [(1,a1), (20,a2), (31,a3)].

[2] When do we ever access (x)?

Only to compute a dot product w·(x) (during training or future evaluation). 

In above example w·(x) is

a1 (x(1))·(x) + a2 (x
(20))·(x) + a3 (x

(31))·(x) 

In general,  w·(x) is  a (weighted) sum of dot products (x(i))·(x). 

Can we compute such dot products without writing out the (x)’s?



Kernel trick, cont’d
In 2-d:
(x)·(z) 

= (1,2x1,2x2,x1
2,x2

2,2x1x2)·(1,2z1,2z2,z1
2,z2

2,2z1z2)

= 1 + 2x1z1 + 2x2z2 + x1
2z12 + x2

2z22 + 2x1x2z1z2
= (1 + x1z1 + x2z2)

2

= (1 + x·z)2

In d dimensions:

(x)·(z) 

= (1, 2x1,…,2xd, x1
2,…,xd

2, 2x1x2,2x1x3,…,2xd-1xd)·

(1, 2z1,…,2zd, z1
2,…,zd

2, 2z1z2,2z1z3,…, 2zd-1zd)

= (1 + x1z1 + x2z2 + … + xdzd)
2

= (1 + x·z)2

Computing dot products in the 1,000,000-dimensional feature space takes time 
proportional to just 1000, the original dimension! 

Never need to write out  (x)!



Kernel trick

Why does it work?

1. The only time we ever use the data is to compute 
dot products w·(x). 

2. And w itself is a linear combination of (x)’s. If
w = a1 (x(1)) + a22 (x

(22)) + a37 (x
(37))

store it as [(1,a1), (22,a22), (37,a37)]

3. Dot products (x)·(z) can be computed 
very efficiently.



Quadratic kernel



Quadratic kernel



Polynomial decision surfaces

To get a decision surface which is a polynomial of order d:

Let (x) consist of all terms of order ≤ d,e.g. x1x2x3
d-3

If  x has p coords, then (x) has about pd coords.

Same trick works: (x)·(z) = (1 + x·z)d !

The data is accessed only through the kernel function 
k(x,z) = (x)·(z).

This is a measure of similarity.



String kernels

Sequence data: eg. 
text documents
speech signals
protein sequences

Each data point is a sequence.

Input space 
X = {A,C,G,T}*

X = {English words}*

Different data points have different lengths.



String kernels

For each substring s, define feature
s(x) = # of times substring s 

appears in x

and
(x) = (s(x): all strings s)

(vector with a coordinate for each string s in the alphabet)
Infinite-dimensional embedding!

Eg.

ar(aardvark) = 2

th(aardvark) = 0

Linear classifier with such features is potentially very powerful.



String kernels

We can compute dot products quickly!

To compute k(x,z) = (x)·(z):

for each substring s of x

count how often s appears in z

With dynamic programming, this just takes time proportional 
to product of the lengths of x,z.

Postscript: kernels over other interesting input spaces: parse 
trees, unordered collections of objects,…



Kernel function

Now, shift attention:

away from embedding (x)

[which we never explicitly construct anyway], 

towards the similarity measure k(x,z)
[the thing we actually use].

Let’s rewrite everything in terms of k.

Suppose the final linear separator is

w = a1y1(x
(1)) + … + am ym(x

(m)).

Then the final classifier can also be written

F(x) = sgn{a1y1k(x
(1),x) + … + amymk(x

(m),x)},

a weighted vote.



Kernel function

As one varies , what kinds of similarity measures k are possible?

Any k satisfying a technical condition (“positive definiteness”) 
corresponds to some embedding (x).

So: don’t worry about  and just pick a similarity measure k
which suits the data at hand.

Popular choice: Gaussian kernel.
k(x,x’) = exp(-||x – x’||2/s2)

The resulting classifiers
F(x) = sgn{a1y1k(x

(1),x) + … + amymk(x
(m),x)}

are closely related to nearest neighbors.



Gaussian kernel



Gaussian kernel



Generalization

With a powerful kernel: can fit any data set. 

Danger: overfitting – the resulting classifier 
might not perform well on future instances.

e.g. given 100 data points in R101.

Can always find a linear classifier to fit them. 

But prediction on a future point is arbitrary.



Margins

All this becomes a lot more manageable if there is a substantial 
margin between the two classes.

Performance of the perceptron depends only on the margin m 
of the classifier, not the dimension!
[Number of updates = 1/m2]

So even infinite dimensions are fine!


