Kernels



Perceptron 1n action

w=20

while some (x,y) 1is
misclassified:

W =W + yX

w=x1 — 5

Sparse
representation:

[(111)1 (71_1)]




When does this fail?

When data is not /inearly separable.

[1] Systematic deviation [2] Noise




Systematic inseparability

Actual decision boundary is
quadratic.

Quick fix: in addition to
regular features
X = (x,,%X,,..,%X3),

add in extra features

2 2 2
x1 ,x2 J °°° IXd 4

The new, enhanced data vectors are of the form
D (x)=

(1,V2x%,,.., V2x4,%x,%,..,%x4, \/2x1x2 , \/2x1x3 V) \/2xd_1xd)



Adding new features

Boundary is something like
X, = %x,°2 + 5.
This is quadratic in
x = (1,x%x,,x,)
but linear in
@ (x)=(1,V2x,,v2x,,x,2,%,2,V2x,x,)

By embedding the data in a higher-dimensional feature
space, we can keep using a linear classifier!



Perceptron revisited

Learning in the higher-dimensional feature space: map each x
onto @ (x) and then run the regular perceptron; that is:

w=20
while some y(w-®(x)) < O:
w=w+y O(x)

Everything works as before; final w is a weighted sum of
various @ (x).

Problem: number of features has now increased dramatically.
For instance, if x € R0 then @ (x) € R1,000,000]



The kernel trick

[Aizenman, Braverman, Rozonoer, 1964]
No need to explicitly write out either w or @ (x) !

[1] Keep w in sparse form
Ifw = (say) a; ®(xV)) + a, ®(x(29) + a;, ®(x3)),
storeitasalist, [ (1,2,), (20,a,), (31,a;)].

[2] When do we ever access @ (x) ?
Only to compute a dot product w- ® (x) (during training or future evaluation).
In above example w- @ (x) is

a, O(x)) -d(x) + a, D (x(??) -D(x) + a; O(xV) -D(x)

In general, w-® (x) is a (weighted) sum of dot products @ (x(*)) - @ (x) .

Can we compute such dot products without writing out the ® (x) ' s?



Kernel trick, cont’d

In 2-d:

D (x) - D (z)

= (1, \/2x1,\/2x2,x1 r X, ,\/2x1x2) (1, \/221,\/222,21 yZo ,\/22 1Z5)
=1 + 2x,z, + 2x,z, + x,%z,2 + x,%z,2 + 2X,X,2,Z,

(1 + %x,2z;, + x,2,)2

= (1 + x-2)2

In d dimensions:

D (x) -D(z)

= (1, \/2x1, \/2xd, x,2,..,%x2, \/2x1x2,\/2x1x3,...,\/2xd_1xd) .
(1, \/221,... \/22d, z.2,..,242%, \/22122,\/22123,..., Vsz_lzd)
(1 + x,2;, + x,2, + ... + x,Z,)?2

= (1 + x-2)2

Computing dot products in the 1,000,000-dimensional feature space takes time
proportional to just 1000, the ongmal dimension!

Never need to write out @ (x) !



Kernel trick

Why does it work?

1. The only time we ever use the data is to compute
dot products w- @ (x) .

2. And witself is a linear combination of @ (x)’s. If
W = a, (I)(x(l)) + a,, (I)(X(ZZ)) + a,, (I)(x(37))
storeitas [ (1,a,), (22,a,,), (37,a3,)]

3. Dot products @ (x) -® (z) can be computed

very efficiently.



Quadratic kernel




Quadratic kernel




Polynomial decision surfaces

To get a decision surface which is a polynomial of order d:

NS

Let ® (%) consist of all terms of order = d,e.g. x x,x,97°
If x hasp coords, then @ (x) has about p? coords.

Same trick works: @ (x) - ®(z) = (1 + x-z)<¢ !
The data is accessed only through the kerne/ fuiznction

k(x,z) = O(x) - O(z).
This is a measure of similarity.



String kernels

Sequence data: eg.
text documents
speech signals
protein sequences
Fach data point is a sequence.

Input space
X = {A,C,G,T}*
X = {English words}*
Different data points have different lengths.



String kernels

For each substring s, define feature

D_(x) = # of times substring s
appears 1in Xx

and

D(x) = (P,(x): all strings s)
(vector with a coordinate for each string s in the alphabet)
Infinite-dimensional embedding!

Eg.
®__(aardvark) 2
., (aardvark) = 0

Linear classifier with such features is potentially very powerful.



String kernels

We can compute dot products quickly!

To compute k (x,z) = O(x) -D(z):
for each substring s of x
count how often s appears in =z

With dynamic programming, this just takes time proportional
to product of the lengths of x, z.

Postscript. kernels over other interesting input spaces: parse
trees, unordered collections of objects,...



Kernel function

Now, shift attention:
away from embedding @ (x)
[which we never explicitly construct anyway]|,
towards the similarity measurek (x, z)
[the thing we actually use].

Let’s rewrite everything in terms of k.
Suppose the final linear separator is
w=aydx®) + . + a, yO(x™).

Then the final classifier can also be written
F(x) = sgn{a,y;k(xV ,x) + .. + a y . k(x™,6x)},
a weighted vote.



Kernel function

As one varies @, what kinds of similarity measures k are possible?

Any k satisfying a technical condition (“positive definiteness”)
corresponds to some embedding @ (x).

So: don’t worry about @ and just pick a similarity measure k
which suits the data at hand.

Popular choice: Gaussian kernel.
k(x,x') = exp(-||lx — x'||?/s?)
The resulting classifiers
F(x) = sgn{a,y;k(x®) ,x) + .. + a y k(x™ x)}
are closely related to nearest neighbors.



(zaussian kernel
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(zaussian kernel
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Generalization

With a powerful kernel: can fit any data set.

Danger: overfitting — the resulting classifier
might not perform well on future instances.

e.g. given 100 data points in R°%,
Can always find a linear classifier to fit them.

But prediction on a future point is arbitrary.



Margins

All this becomes a lot more manageable if there is a substantial
margin between the two classes.

Performance of the perceptron depends only on the margin m
of the classifier, not the dimension!

[Number of updates = 1/m?]

So even infinite dimensions are fine!



