
Kernels



Perceptron in action
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10 7 w = x(1) – x(7)

Sparse 

representation:

[(1,1), (7,-1)]

w = 0

while some (x,y) is 
misclassified:

w = w + yx



When does this fail?

When data is not linearly separable.

[1] Systematic deviation [2] Noise
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Systematic inseparability

Actual decision boundary is 
quadratic.

Quick fix: in addition to 
regular features 

x = (x1,x2,…,xd), 
add in extra features

x1
2,x2

2,…,xd
2,

x1x2,x1x3,…,xd-1xd

The new, enhanced data vectors are of the form
(x)=

(1,2x1,…, 2xd,x1
2,…,xd

2,2x1x2,2x1x3,…,2xd-1xd)
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Adding new features
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Boundary is something like

x1 = x2
2 + 5.

This is quadratic in

x = (1,x1,x2) 

but linear in

(x)=(1,2x1, 2x2,x1
2,x2

2,2x1x2)

By embedding the data in a higher-dimensional feature 
space, we can keep using a linear classifier!



Perceptron revisited

Learning in the higher-dimensional feature space: map each x
onto (x)and then run the regular perceptron; that is:

w = 0

while some  y(w·(x)) ≤ 0:

w = w + y (x)

Everything works as before; final w is a weighted sum of 
various (x).

Problem: number of features has now increased dramatically.

For instance, if x 2 R1,000 then (x) 2 R1,000,000 !



The kernel trick
[Aizenman, Braverman, Rozonoer, 1964] 

No need to explicitly write out either w or (x)!

[1] Keep w in sparse form

If w = (say) a1 (x(1)) + a2 (x
(20)) + a3 (x

(31)),

store it as a list, [(1,a1), (20,a2), (31,a3)].

[2] When do we ever access (x)?

Only to compute a dot product w·(x) (during training or future evaluation). 

In above example w·(x) is

a1 (x(1))·(x) + a2 (x
(20))·(x) + a3 (x

(31))·(x) 

In general,  w·(x) is  a (weighted) sum of dot products (x(i))·(x). 

Can we compute such dot products without writing out the (x)’s?



Kernel trick, cont’d
In 2-d:
(x)·(z) 

= (1,2x1,2x2,x1
2,x2

2,2x1x2)·(1,2z1,2z2,z1
2,z2

2,2z1z2)

= 1 + 2x1z1 + 2x2z2 + x1
2z12 + x2

2z22 + 2x1x2z1z2
= (1 + x1z1 + x2z2)

2

= (1 + x·z)2

In d dimensions:

(x)·(z) 

= (1, 2x1,…,2xd, x1
2,…,xd

2, 2x1x2,2x1x3,…,2xd-1xd)·

(1, 2z1,…,2zd, z1
2,…,zd

2, 2z1z2,2z1z3,…, 2zd-1zd)

= (1 + x1z1 + x2z2 + … + xdzd)
2

= (1 + x·z)2

Computing dot products in the 1,000,000-dimensional feature space takes time 
proportional to just 1000, the original dimension! 

Never need to write out  (x)!



Kernel trick

Why does it work?

1. The only time we ever use the data is to compute 
dot products w·(x). 

2. And w itself is a linear combination of (x)’s. If
w = a1 (x(1)) + a22 (x

(22)) + a37 (x
(37))

store it as [(1,a1), (22,a22), (37,a37)]

3. Dot products (x)·(z) can be computed 
very efficiently.



Quadratic kernel



Quadratic kernel



Polynomial decision surfaces

To get a decision surface which is a polynomial of order d:

Let (x) consist of all terms of order ≤ d,e.g. x1x2x3
d-3

If  x has p coords, then (x) has about pd coords.

Same trick works: (x)·(z) = (1 + x·z)d !

The data is accessed only through the kernel function 
k(x,z) = (x)·(z).

This is a measure of similarity.



String kernels

Sequence data: eg. 
text documents
speech signals
protein sequences

Each data point is a sequence.

Input space 
X = {A,C,G,T}*

X = {English words}*

Different data points have different lengths.



String kernels

For each substring s, define feature
s(x) = # of times substring s 

appears in x

and
(x) = (s(x): all strings s)

(vector with a coordinate for each string s in the alphabet)
Infinite-dimensional embedding!

Eg.

ar(aardvark) = 2

th(aardvark) = 0

Linear classifier with such features is potentially very powerful.



String kernels

We can compute dot products quickly!

To compute k(x,z) = (x)·(z):

for each substring s of x

count how often s appears in z

With dynamic programming, this just takes time proportional 
to product of the lengths of x,z.

Postscript: kernels over other interesting input spaces: parse 
trees, unordered collections of objects,…



Kernel function

Now, shift attention:

away from embedding (x)

[which we never explicitly construct anyway], 

towards the similarity measure k(x,z)
[the thing we actually use].

Let’s rewrite everything in terms of k.

Suppose the final linear separator is

w = a1y1(x
(1)) + … + am ym(x

(m)).

Then the final classifier can also be written

F(x) = sgn{a1y1k(x
(1),x) + … + amymk(x

(m),x)},

a weighted vote.



Kernel function

As one varies , what kinds of similarity measures k are possible?

Any k satisfying a technical condition (“positive definiteness”) 
corresponds to some embedding (x).

So: don’t worry about  and just pick a similarity measure k
which suits the data at hand.

Popular choice: Gaussian kernel.
k(x,x’) = exp(-||x – x’||2/s2)

The resulting classifiers
F(x) = sgn{a1y1k(x

(1),x) + … + amymk(x
(m),x)}

are closely related to nearest neighbors.



Gaussian kernel



Gaussian kernel



Generalization

With a powerful kernel: can fit any data set. 

Danger: overfitting – the resulting classifier 
might not perform well on future instances.

e.g. given 100 data points in R101.

Can always find a linear classifier to fit them. 

But prediction on a future point is arbitrary.



Margins

All this becomes a lot more manageable if there is a substantial 
margin between the two classes.

Performance of the perceptron depends only on the margin m 
of the classifier, not the dimension!
[Number of updates = 1/m2]

So even infinite dimensions are fine!


