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Model: Definitions
X = input space
Y = {0,1} = output space
c. X — Y = classifier
Model: Basic Assumption

All samples are drawn independently from some unknown distri-
bution D(x,vy).

S = (x,y)™ ~ D™ is a sample set.



Model: Derived quantities

The thing we want to know:

cp= Pr (c(x) #vy) = true error
z,y~D



Model: Derived quantities

The thing we want to know:

cp= Pr (c(:c) = y) = true error
z,y~D

The thing we have:

cg=m Pr (C(:v) Fy) = I [c(x) # ]

N .
T,y =

= “train error’, “test error’, o observed error’, depending on
context.

(note: we identify the set S with the uniform distribution on S)



Model: Basic Observations
Q: What is the distribution of cg?
A: A Binomial.

~ — [ m k . m—k
L. (es =klep) = ( I >CD(1 ¢p)

— probability of k heads (errors) in m flips of a coin with bias
CD-
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Model: basic quantities

We use the cumulative:
Bin (m, k,cp)

Prs.pm (¢cs < k|cp)

m . s

— probability of observing k or fewer “heads” (errors) with m
coins.



Model: basic quantities

Need confidence intervals = use the pivot of the cumulative
instead

Bin (m,k,§) = max{p : Bin (m, k,p) > 6}

— the largest true error such that the probability of observing k
or fewer “heads” (errors) is at least 4.
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Test Set Bound: Setting

Standard technique:

1. Cut the data into train set and test set

2. Train on the train set

3. Test on the test set

What do sample complexity say about this method?



Test Set Bound: Theorem

Theorem: (Test Set Bound) For all classifiers ¢, for all D, for all
6 € (0,1]:

Sflgm (cD < Bin (m, 05,5)) >1—-6

World's easiest proof: (by contradiction).
Assume Bin (m, k,cp) > § (which is true with probability 1 — ).

Then by definition, Bin (m,¢cg,d) > cp



Probability

0.2

0.15

0.1

0.05

Observation and Possible Binomials

.

0 0.2

I | |
emplrlcal error AN NN EE EE

0.4 0.6 0.8

Empirical Error Rate




Probability

0.2

0.15

O

0.05

Observation and Consistent Binomials

I I L
emplrlcal error AN NN EE EE

0.2 0.4 0.6 0.8
Empirical Error Rate




Probability

True Error Bound

0.2 [ : - I — i
emplrlcal error AN NN EE EE

true error bound =r =
0.15 |

O
=
|

0.05 =E_

0 0.2 0.4 0.6 0.8
Empirical Error Rate




Test Set Bound Notes

Perfectly tight: There exist true error rates achieving the bound

Lower bound of the same form.

Primary use: verification of succesful learning



What does Test Set Bound mean?

Corollary: For all classifiers ¢, for all D, for all § € (0, 1]:
1

c In <
Pr (KL (C—5||CD> < 5) >1-4
S~Dm m m
where KL(q||p) =qln%—|—(1 q)ln for qg<p

Corollary: For all classifiers ¢, for all D, for all § € (0, 1]

In &
Pr CD< S—|— 0

>1-9
S~Dm m 2m

Proof: Use the Chernoff approximation. Full details in the notes.



Test Set Bound: Example
Suppose § = 0.1
Suppose m = 100
Suppose cg = 2
Square root Chernoff bound: = cp € [-0.102,0.142]

Exact calculation = ¢p € [0.0045,0.0616]
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Training Set Bounds in General

e Sometimes a holdout set is critical for learning.

e Sometimes we want bounds to guide learning

=Train set bounds

Occam’s Razor bound is the simplest train set bound.
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Occam’s Razor Bound

Theorem: (Occam’s Razor Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

Sflgm (‘v’c . ¢cp < Bin(m,cqg,6P (c))> >1-9

Compare with test set bound: § — 6P(c).

Corollary: For all P(c¢), for all D, for all 6 € (0, 1]:

N5y + 1N

2m

Pr cD<CS+J >1-6
m



Occam’s Razor Bound: Proof

Test set bound =

Ve Sflgm (CD < Bin (m, 55,5]3(6))) >1—90P(c)



Occam’s Razor Bound: Proof

Test set bound =

Ve SEDrm (CD < Bin (m, cS,5P(c))) >1—6P(c)
Negate to get:

Ve Sflgm (CD > Bin (m, ES,5P(C))> < 6P(c)



Occam’s Razor Bound: Proof

Test set bound =
Ve Sflgm (CD < Bin (m, cS,5P(c))) >1—-06P(c)
Negate to get:
Ve Sflgm (CD > Bin (m, cS,5P(c))> < dP(c)
Apply union bound: Pr(A or B) < Pr(A) + Pr(B) repeatedly.

P, (3 ep>Bin(m,as,6P(c)) <3 0P(c) =6
~ [)m g



Occam’s Razor Bound: Proof

Test set bound =

Ve SEDrm (CD < Bin (m, ES,5P(C))) >1—6P(c)

Negate to get:
Ve SEDrm (CD > Bin (m, cS,éP(c))> < 6P(c)
Apply union bound: Pr(A or B) < Pr(A) + Pr(B) repeatedly.

SPDr (Elc . ¢p > Bin(m, 55,5]3(0))) <Y 6P(c) =46
~ [Dm .

Negate again to get proof.

Next: Graphical proof



Occam'’s Razor Tail Cuts
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Each classifier is a Binomial with a different size tail cut.

With high probability no error falls in any tail.



Occam Bound Calculation
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The chosen classifier has an unknown true error rate.



True Error Rate Bound
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Bound = the largest true error rate for which the observation is
not in the tail.



Occam’s Razor Bound: Example
Suppose 6 = 0.1
Suppose m = 100
Suppose P(c¢) = 0.1
Suppose cg =2
Square root Chernoff = c¢p € [-0.143,0.183]

Exact calculation = ¢p € [0.001, 0.089]



Conclusion

1. A real confidence interval to compare classifiers is good.

2. Test set bound very simple.

3. Train set bounds tell you something about how to design an
algorithm, but are somewhat loose also.

Code for bound calculation at:

http://hunch.net/~jl /projects/prediction_bounds/bound/bound.html
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