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Model: De�nitions

X = input spae
Y = {0,1} = output spae
c : X → Y = lassi�erModel: Basi AssumptionAll samples are drawn independently from some unknown distri-bution D(x, y).

S = (x, y)m ∼ Dm is a sample set.



Model: Derived quantitiesThe thing we want to know:
cD ≡ Pr

x,y∼D
(c(x) 6= y) = true error

�train error�, �test error�, or �observed error�, depending on on-text.(note: we identify the set S with the uniform distribution on S)



Model: Derived quantitiesThe thing we want to know:
cD ≡ Pr

x,y∼D
(c(x) 6= y) = true errorThe thing we have:

ĉS ≡ m Pr
x,y∼S

(c(x) 6= y) =
m
∑

i=1

I [c(x) 6= y]= �train error�, �test error�, or �observed error�, depending onontext.(note: we identify the set S with the uniform distribution on S)



Model: Basi ObservationsQ: What is the distribution of ĉS?A: A Binomial.

Pr
S∼Dm

(ĉS = k| cD) =

(

m

k

)

ck
D(1 − cD)m−k

= probability of k heads (errors) in m �ips of a oin with bias

cD.
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Model: basi quantitiesWe use the umulative:Bin (m, k, cD) = PrS∼Dm (ĉS ≤ k| cD)

=
∑k

i=0

(

m

i

)

ci
D(1 − cD)m−i= probability of observing k or fewer �heads� (errors) with moins.



Model: basi quantitiesNeed on�dene intervals ⇒ use the pivot of the umulativeinstead
Bin (m, k, δ) = max {p : Bin (m, k, p) ≥ δ}

= the largest true error suh that the probability of observing kor fewer �heads� (errors) is at least δ.



Outline

1. The Basi Model

2. The Test Set Bound

3. Oam's Razor Bound



Test Set Bound: SettingStandard tehnique:

1. Cut the data into train set and test set

2. Train on the train set

3. Test on the test set

What do sample omplexity say about this method?



Test Set Bound: TheoremTheorem: (Test Set Bound) For all lassi�ers c, for all D, for all

δ ∈ (0,1]:

Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δ)
)

≥ 1 − δ

World's easiest proof: (by ontradition).Assume Bin (m, k, cD) ≥ δ (whih is true with probability 1 − δ).Then by de�nition, Bin (m, ĉS, δ) ≥ cD
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Test Set Bound NotesPerfetly tight: There exist true error rates ahieving the boundLower bound of the same form.Primary use: veri�ation of suesful learning



What does Test Set Bound mean?Corollary: For all lassi�ers c, for all D, for all δ ∈ (0,1]:

Pr
S∼Dm



KL(ĉS

m
||cD

)

≤
ln 1

δ

m



 ≥ 1 − δwhere KL(q||p) = q ln q
p
+ (1 − q) ln 1−q

1−p

for q < pCorollary: For all lassi�ers c, for all D, for all δ ∈ (0,1]

Pr
S∼Dm






cD ≤

ĉS

m
+

√

√

√

√

ln 1
δ

2m






≥ 1 − δ

Proof: Use the Cherno� approximation. Full details in the notes.



Test Set Bound: ExampleSuppose δ = 0.1Suppose m = 100Suppose ĉS = 2Square root Cherno� bound: ⇒ cD ∈ [−0.102,0.142]Exat alulation ⇒ cD ∈ [0.0045, 0.0616]
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Training Set Bounds in General

• Sometimes a holdout set is ritial for learning.

• Sometimes we want bounds to guide learning
⇒Train set boundsOam's Razor bound is the simplest train set bound.



Verifier Learner

m examples

Draw Training 
Examples

Evaluate Bound

"Prior", P(c)

classifier, c Choose c

δ
Occam’s Razor Bound Protocol



Oam's Razor BoundTheorem: (Oam's Razor Bound) For all �priors� P(c) over thelassi�ers c, for all D, for all δ ∈ (0,1]:
Pr

S∼Dm

(

∀c : cD ≤ Bin (m, ĉS, δP (c))
)

≥ 1 − δ

Compare with test set bound: δ → δP(c).Corollary: For all P(c), for all D, for all δ ∈ (0,1]:
Pr

S∼Dm









cD ≤
ĉS

m
+

√

√

√

√

ln 1
P (c)

+ ln 1
δ

2m









≥ 1 − δ



Oam's Razor Bound: ProofTest set bound ⇒

∀c Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δP(c))
)

≥ 1 − δP(c)

Negate to get:8 PrS�Dm �D > Bin (m;^S; ÆP ())� < ÆP ()Apply union bound: Pr(A or B) � Pr(A) + Pr(B) repeatedly.PrS�Dm �9 : D > Bin (m;^S; ÆP ())� <X ÆP() = ÆNegate again to get proof.Next: Graphial proof



Oam's Razor Bound: ProofTest set bound ⇒

∀c Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δP(c))
)

≥ 1 − δP(c)Negate to get:
∀c Pr

S∼Dm

(

cD > Bin (m, ĉS, δP(c))
)

< δP(c)

Apply union bound: Pr(A or B) � Pr(A) + Pr(B) repeatedly.PrS�Dm �9 : D > Bin (m;^S; ÆP ())� <X ÆP() = ÆNegate again to get proof.Next: Graphial proof



Oam's Razor Bound: ProofTest set bound ⇒

∀c Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δP(c))
)

≥ 1 − δP(c)Negate to get:

∀c Pr
S∼Dm

(

cD > Bin (m, ĉS, δP(c))
)

< δP(c)Apply union bound: Pr(A or B) ≤ Pr(A) + Pr(B) repeatedly.

Pr
S∼Dm

(

∃c : cD > Bin (m, ĉS, δP(c))
)

<
∑

c

δP(c) = δ

Negate again to get proof.Next: Graphial proof



Oam's Razor Bound: ProofTest set bound ⇒

∀c Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δP(c))
)

≥ 1 − δP(c)Negate to get:

∀c Pr
S∼Dm

(

cD > Bin (m, ĉS, δP(c))
)

< δP(c)Apply union bound: Pr(A or B) ≤ Pr(A) + Pr(B) repeatedly.

Pr
S∼Dm

(

∃c : cD > Bin (m, ĉS, δP(c))
)

<
∑

c

δP(c) = δNegate again to get proof.Next: Graphial proof
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Eah lassi�er is a Binomial with a di�erent size tail ut.With high probability no error falls in any tail.
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The hosen lassi�er has an unknown true error rate.
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Bound = the largest true error rate for whih the observation isnot in the tail.



Oam's Razor Bound: ExampleSuppose δ = 0.1Suppose m = 100Suppose P(c) = 0.1Suppose ĉS = 2Square root Cherno� ⇒ cD ∈ [−0.143,0.183]Exat alulation ⇒ cD ∈ [0.001,0.089]



Conlusion

1. A real on�dene interval to ompare lassi�ers is good.

2. Test set bound very simple.

3. Train set bounds tell you something about how to design analgorithm, but are somewhat loose also.

Code for bound alulation at:http://hunh.net/~jl/projets/predition bounds/bound/bound.html



Midterm Thursday!


