Machine Learning 4771: Homework 2

(15% of the grade)

Due on February 26, 2:40pm

Note: You are not allowed to submit an answer you cannot explain in person. Please take this seriously:
You can be quizzed on your homework.

Late assignments will not be accepted.

Problem 1
(Regression) Given a set of training examples (z1,y1),...,(zn,yn) € R™ x R, let X be a N X n matrix
with row i corresponding to example z;, and let y = [y1,...,yn]? (column vector containing the N training

labels). Consider the problem of finding w € R™ minimizing
X w —yl* + [[w]?,
where || - || is the Euclidean norm.

Does the regularization term ||w||? force the solution vector w to have a small number of non-zero entries?
Explain why or why not.

Solution: The answer is no, due to the nature of quadratic loss. When there are several correlated features
with a significant effect on y, ridge regression tends to “share” the coefficient value among them (which
results in a smaller Lo penalty than putting a large value on a small subset of them). If we use the L;
penalty ||wlj; = Y., |w;| instead, there will be a tendency to zero out most (if not all but one) correlated
features, resulting in a sparse coefficient vector w.

Problem 2

Describe a concept class C' for which the halving algorithm is not optimal, i.e., you would get a better
worst-case mistake bound by not going with the majority vote among the concepts in C' consistent with
examples observed so far. Explain your answer.
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Solution: Example 2 in the paper below.

Problem 3

Describe a concept class C' where the worst-case mistake bound of the halving algorithm (log|C|) is not
tight. Explain your answer.

Solution: Example 1 in the paper below.

Bonus: You will receive bonus points for examples significantly different from the ones appearing in the
following paper:

Nick Littlestone, Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold
Algorithm, Machine Learning, 2(4): 285-318, 1998.

Copying any text from the paper will deterministically lead to a quiz. You can use examples from the paper,
but you have to explain them yourself.

Problem 4

Describe a concept class C' where no randomized algorithm can do better than (log|C|)/2 mistakes in
expectation (over the randomness in the algorithm). Explain your answer.

Solution: Let C be the class of monotone disjunctions on n boolean variables and consider the following
sequence of n examples: examle x; has t-th bit set to 1 and all other bits set to 0, for ¢ from 1 to n. Consider
any randomized algorithm making binary predictions on this sequence. Let p; be the probability that the
algorithm outputs 1 in trial ¢. Imagine that the true labeling of these examples given by 1(p; < 1/2), so
the label of z; is 1 if p, < 1/2 and 0 otherwise; this labeling is certainly consistent with a disjunction. The
expected number of mistakes that the algorithm makes on the sequence is Y ;. max{p;, 1 — p;} > n/2.
This lower bound can be matched by an algorithm that outputs according to a random OR. function,
which includes each variable with probability 1/2. Thus each p; = 1/2, and the expected number of mistakes

isn/2. 1

Problem 5

An online learning algorithm is lazy if it changes its state only when it makes a mistake. Show that for any
deterministic online learning algorithm A achieving a mistake bound M with respect to a concept class C,
there exists a lazy algorithm A’ that also achieves M with respect to C.

Recall the definition: Algorithm A has a mistake bound M with respect to a learning class C' if A makes at
most M mistakes on any sequence that is consistent with a function in C.

Solution: Let A’ be the lazy version of A (has the same update rule as A on mistakes and doesn’t change
its state on correctly labeled examples). We will show that A’ has a mistake bound M with respect to
C. Assume that there exists a sequence of examples on which A’ makes M’ > M mistakes. Cross out all
examples on which A’ doesn’t make a mistake, and let s denote the resulting sequence. Both A and A’
behave identically on s, and A makes at most M mistakes on any sequence of examples, including s. This
leads to the desired contradiction. (Obviously, if the original sequence is consistent with a concept in C, so

is 5.) [l
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Problem 6

Prove mistake bounds for the following two modifications to WINNOW, for the class of monotone disjunctions
over n boolean variables. (Such a disjunction is a boolean function of the form \/,.gz; for some subset
S C {1,...,n}. Here \/ denotes the boolean OR function.) Assume that all labels are consistent with a
monotone disjunction.

Given an example x = (z1,...,2,),

e If the algorithm makes a mistake on a negative (predicts 1 when the correct label of x is 0), then for
each x; equal to 1 set w; = 0.

e Whenever the correct label is 0 (regardless of whether the algorithm made a mistake or not), set w; = 0
for each x; equal to 1.

A formal proof is expected.

Solution:

e On each mistake on a positive, the weight of at least one of r relevant variables in the target disjunction
must be doubled (otherwise the example would not be positive). Thus each relevant variable can be
doubled at most [logn] times, and the total number of mistakes due to mistakes on positives is at
most r[logn]. (This part of the analysis didn’t change.)

On each mistake on a positive, the total weight W increases by at most n (since we predicted 0). On
each mistake on a negative, W decreases by at least n. Since the total weight began at n is always
positive, the number of mistakes on negatives is never more than the number of mistakes on positives
plus 1. Thus the mistake bound is 2r[logn] + 1.

e The mistake bound is the same (see Problem 5).
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