
Machine Learning 4771: Homework 2

(15% of the grade)

Due on February 26, 2:40pm

Note: You are not allowed to submit an answer you cannot explain in person. Please take this seriously:
You can be quizzed on your homework.

Late assignments will not be accepted.

Problem 1

(Regression) Given a set of training examples (x1, y1), . . . , (xN , yN ) ∈ Rn × R, let X be a N × n matrix
with row i corresponding to example xi, and let y = [y1, . . . , yN ]T (column vector containing the N training
labels). Consider the problem of finding w ∈ Rn minimizing

‖X ·w − y‖2 + ‖w‖2,

where ‖ · ‖ is the Euclidean norm.

Does the regularization term ‖w‖2 force the solution vector w to have a small number of non-zero entries?
Explain why or why not.

Solution: The answer is no, due to the nature of quadratic loss. When there are several correlated features
with a significant effect on y, ridge regression tends to “share” the coefficient value among them (which
results in a smaller L2 penalty than putting a large value on a small subset of them). If we use the L1

penalty ‖w‖1 =
∑n

i=1 |wi| instead, there will be a tendency to zero out most (if not all but one) correlated
features, resulting in a sparse coefficient vector w.

Problem 2

Describe a concept class C for which the halving algorithm is not optimal, i.e., you would get a better
worst-case mistake bound by not going with the majority vote among the concepts in C consistent with
examples observed so far. Explain your answer.
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Solution: Example 2 in the paper below.

Problem 3

Describe a concept class C where the worst-case mistake bound of the halving algorithm (log |C|) is not
tight. Explain your answer.

Solution: Example 1 in the paper below.

Bonus: You will receive bonus points for examples significantly different from the ones appearing in the
following paper:

Nick Littlestone, Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold
Algorithm, Machine Learning, 2(4): 285–318, 1998.

Copying any text from the paper will deterministically lead to a quiz. You can use examples from the paper,
but you have to explain them yourself.

Problem 4

Describe a concept class C where no randomized algorithm can do better than (log |C|)/2 mistakes in
expectation (over the randomness in the algorithm). Explain your answer.

Solution: Let C be the class of monotone disjunctions on n boolean variables and consider the following
sequence of n examples: examle xt has t-th bit set to 1 and all other bits set to 0, for t from 1 to n. Consider
any randomized algorithm making binary predictions on this sequence. Let pt be the probability that the
algorithm outputs 1 in trial t. Imagine that the true labeling of these examples given by 1(pt ≤ 1/2), so
the label of xt is 1 if pt ≤ 1/2 and 0 otherwise; this labeling is certainly consistent with a disjunction. The
expected number of mistakes that the algorithm makes on the sequence is

∑n
t=1 max{pt, 1− pt} ≥ n/2.

This lower bound can be matched by an algorithm that outputs according to a random OR function,
which includes each variable with probability 1/2. Thus each pt = 1/2, and the expected number of mistakes
is n/2.

Problem 5

An online learning algorithm is lazy if it changes its state only when it makes a mistake. Show that for any
deterministic online learning algorithm A achieving a mistake bound M with respect to a concept class C,
there exists a lazy algorithm A′ that also achieves M with respect to C.

Recall the definition: Algorithm A has a mistake bound M with respect to a learning class C if A makes at
most M mistakes on any sequence that is consistent with a function in C.

Solution: Let A′ be the lazy version of A (has the same update rule as A on mistakes and doesn’t change
its state on correctly labeled examples). We will show that A′ has a mistake bound M with respect to
C. Assume that there exists a sequence of examples on which A′ makes M ′ > M mistakes. Cross out all
examples on which A′ doesn’t make a mistake, and let s denote the resulting sequence. Both A and A′

behave identically on s, and A makes at most M mistakes on any sequence of examples, including s. This
leads to the desired contradiction. (Obviously, if the original sequence is consistent with a concept in C, so
is s.)
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Problem 6

Prove mistake bounds for the following two modifications to WINNOW, for the class of monotone disjunctions
over n boolean variables. (Such a disjunction is a boolean function of the form

∨
i∈S xi for some subset

S ⊆ {1, . . . , n}. Here
∨

denotes the boolean OR function.) Assume that all labels are consistent with a
monotone disjunction.

Given an example x = (x1, . . . , xn),

• If the algorithm makes a mistake on a negative (predicts 1 when the correct label of x is 0), then for
each xi equal to 1 set wi = 0.

• Whenever the correct label is 0 (regardless of whether the algorithm made a mistake or not), set wi = 0
for each xi equal to 1.

A formal proof is expected.

Solution:

• On each mistake on a positive, the weight of at least one of r relevant variables in the target disjunction
must be doubled (otherwise the example would not be positive). Thus each relevant variable can be
doubled at most dlog ne times, and the total number of mistakes due to mistakes on positives is at
most rdlog ne. (This part of the analysis didn’t change.)

On each mistake on a positive, the total weight W increases by at most n (since we predicted 0). On
each mistake on a negative, W decreases by at least n. Since the total weight began at n is always
positive, the number of mistakes on negatives is never more than the number of mistakes on positives
plus 1. Thus the mistake bound is 2rdlog ne+ 1.

• The mistake bound is the same (see Problem 5).
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