
Machine Learning 4771: Homework 1
Due on February 12, 2008

Problem 1

Setup: Suppose that you have a black box learning algorithm A for optimizing zero-one loss: For any
distribution D′ over X × {0, 1}, A takes a set of training examples from D′, and produces a classifier
f : X → {0, 1} optimized for E(x,y)∼D′1[f(x) 6= y]. (Here 1[·] is the indicator function, which is 1 when its
argument is true, and 0 otherwise.)

You have a distribution D over X ×{0, 1}, but the loss function you care about is asymmetric. You want to
learn a classifier h : X → {0, 1} minimizing

ρ(h) = E(x,y)∼D

{
10y−1 · 1[h(x) 6= y]

}
.

In other words, you care about false negatives (predicting 0 when the true label is 1) 10 times more than
about false positives (predicting 1 when the true label is 0).1

Problem: How do you use A to optimize ρ on D? You can’t modify A (you don’t have the source code or
the source code is too complicated to be tweaked).

Hints: You can tweak the training set sampled from D before feeding it into A, essentially re-wighting D so
that minimizing the symmetric rate of errors on the re-weighted distribution D′ is equivalent to minimizing
ρ on D. (What’s the optimal D′?)

At training time, you need to convert a sample S from D into a sample S′ from D′. Given S′, the black box
A returns a classifier f minimizing the symmetric rate of errors on D′. At test time, you can use predictions
made by f (on any examples of your choice) to construct your prediction on a test example drawn from D.
Depending on your solution, you can simply output f ’s output on the test example.

You are allowed to train multiple classifiers using A (by feeding A different training sets). You can use these
classifiers in an arbitrary way at test time. The only thing you are not allowed to do is to tweak A itself.

1Think about predicting the presence (y = 1) or absence (y = 0) of a disease based on lab results x. It may be 10 times
better to have a false alarm rather than let the disease go unnoticed.

1

Machine Learning 4771 : Homework 1 Problem 2

Solution: Let c(y) be the cost of misclassifying any example with label y. In our problem, c(y) = 10y−1.
The solution should be guided by the following observation: For any distribution D over X ×{0, 1} and any
w ≥ 1, we can define

D′(x, y) =
c(y)
W

D(x, y),

where W = E(x,y)∼Dc(y) is just the expected misprediction cost of a random example from D, so that for
all classifiers f : X → {0, 1}

E(x,y)∼D′1[f(x) 6= y] =
1
W

E(x,y)∈D [c(y) · 1[f(x) 6= y]] .

To see that the observation is true, simply observe that

E(x,y)∼D [c(y) · 1[f(x) 6= y]] =
∑

(x,y)∈X×{0,1}

D(x, y) · c(y) · 1[f(x) 6= y]

= W
∑

(x,y)∈X×{0,1}

D′(x, y) · 1[f(x) 6= y]

= WE(x,y)∼D′1[f(x) 6= y],

assuming that X is finite. Now, the natural thing to do is to reweight the distribution D in our training
set according to the weights, to produce a sample from D′. Several simple sampling schemes are reasonable.
An acceptable solution is to define a probability distribution over the training set S and draw from that
distribution to create S′: Draw example (x, y) in S with probability c(y)/

∑
(x,y)∈S c(y). The size of S′

can wary. (One subtlety of this simple sampling scheme is that examples in S′ drawn this way are not
drawn independently from D′, so there is a risk of overfitting if the difference in costs is high.) Any solution
attempting to sample from the optimal D′ will receive full credit.

Problem 2

Setup: Let X = {0, 1}n be the set of all n bit input strings, and let Y = {0, 1}. Consider a distribution
D over X × Y specified by D(x, y) = D(x)D(y | x): The marginal distribution over X is uniform. Thus
for every x ∈ X, D(x) = 2−n. For every x ∈ X, the conditional distribution over Y given x puts all its
probability mass on y′ = {(xn−1 + xn) mod 2} (parity of the first two bits of x); i.e., D(y′ | x) = 1 and
D(1− y′ | x) = 0. Thus the conditional probability distribution is independent of the first n− 2 bits of x.

Problem: You get a set of N independent examples from D and you are using a decision tree learning
algorithm A to produce a classifier f : X → {0, 1}. The algorithm A is generic, i.e., it does not know D. To
be specific,

• all test are of the form “Is xi = 1?” for i ∈ {1, . . . , n},
• information gain criteria is used to select tests, with ties broken randomly,

• there is no lookahead,

• the tree can be post-pruned after it has been grown to zero error.

What is the smallest expected number of examples N (big-O precision is fine here) such that the learned
tree has expected error rate 0 on D (where the expectation is with respect to the draw of the training set
SN of size N and the randomness in the algorithm)? Explain your answer. What is the expected entropy of
the class label in SN (the expectation is with respect to the draw of SN)?

Solution: The expected number of examples with label 0 in SN is N/2, thus the expected original entropy
about the class is 1. In expectation over the draw of SN , all n tests have zero information gain, so a random
xi will be chosen as the root. The expected information gain of any test will remain 0 until one of xn−1 or

Problem 2 continued on next page. . . Page 2 of 3

Machine Learning 4771 : Homework 1 Problem 2 (continued)

xn is chosen as a test on each decision path. After that, the expected information gain of the other test will
be (effectively) 1, so splitting on it will result in (effectively) 0 error.2 Thus the number of samples N needs
to be large enough so that the tree can’t grow to zero training error without testing both xn−1 and xn on
every decision path. Consequently, with high probability over the draw of the training set, the expected N
must be on the order of O(2n). Such level of precision is sufficient.

Problem 3

Show that for any D over X × R and any x ∈ X,

argminy′Ey∼D|x(y − y′)2 = Ey∼D|x[y].

Here D | x is the conditional distribution over R given x. (Square brackets are simply delimiters; they don’t
have semantic content here.)

Proof: To simplify notation, let P denote D | x. We have

Ey∼P (y − y′)2 = Ey∼P [y2]− 2y′Ey∼P [y] + (y′)2.

Now the first term Ey∼P [y2] is the same for all y′, so it doesn’t affect the argmix. We want argminy′(y′)2 −
2y′Ey∼P [y]. Taking the derivative with respect to y′ and setting it to zero gives y′ = Ey∼P [y], completing
the proof.

2There is, of course, a slim chance that we get a non-representative sample from D; for example, we may get the same
example N times. This is not the point of this exercise. Precision is not always the same as accuracy.

Page 3 of 3

