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A central problem in machine learning is supervised learning—that is, learning from labeled training
data. For example, a learning system for medical diagnosis might be trained with examples of
patients whose case records (medical tests, clinical observations) and diagnoses were known. The
task of the learning system is to infer a function that predicts the diagnosis of a patient from his
or her case records. The function to be learned might be represented as a set of rules, a decision
tree, a Bayes network, or a neural network.

Learning algorithms essentially operate by searching some space of functions (usually called the
hypothesis class) for a function that fits the given data. Because there are usually exponentially
many functions, this search cannot actually examine individual hypothesis functions but instead
must use some more direct method of constructing the hypothesis functions from the data. This
search can usually be formalized by defining an objective function (e.g., number of data points pre-
dicted incorrectly) and applying various algorithms to find a function that minimizes this objective
function. In virtually all interesting cases, the computational problem of minimizing the objective
function is NP-hard. For example, fitting the weights of a neural network or finding the smallest
decision tree are both NP-complete problems [1, 4]. Hence, heuristic algorithms such as gradient
descent (for neural networks) and greedy search (for decision trees) have been applied with great
success.

Of course, the sub-optimality of such heuristic algorithms immediately suggests a reasonable line of
research: find algorithms that can search the hypothesis class better. Hence, there is been extensive
research in applying second-order methods to fit neural networks and in conducting much more
thorough searches in learning decision trees and rule sets. Ironically, when these algorithms were
tested on real datasets, it was found that their performance was often worse than simple gradient
descent or greedy search [3, 5]. In short: it appears to be better not to optimize!

One of the other important trends in machine learning research has been the establishment and
nurturing of connections between various previously-disparate fields including computational learn-
ing theory, connectionist learning, symbolic learning, and statistics. The connection to statistics
was crucial in resolving this paradox.

The key problem arises from the structure of the machine learning task. A learning algorithm is
trained on a set of training data, but then it is applied to make predictions on new data points. The
goal is to maximize its predictive accuracy on the new data points—not necessarily its accuracy on
the training data. Indeed, if we work too hard to find the very best fit to the training data, there
is a risk that we will fit the noise in the data by memorizing various peculiarities of the training
data rather than finding a general predictive rule. This phenomenon is usually called “overfitting”.

Hence, the objective function that we used in formulating the optimization problem (“minimize
error on the training data”) is in fact not the correct objective function. A large body of work
has addressed this problem by augmenting the objective function with various penalty terms (e.g.,
regularization methods, minimum-description length methods, generalized cross-validation, etc.)
[2]. These terms attempt to predict the off-training-set accuracy from its on-training-set accuracy.



With this fix to the objective function, we can again apply our armamentum of optimization
algorithms to solve this new optimization problem (but with the same—or worse—computational
complexity problems). Experimental results confirm that this removes the paradox.

However, rather than attempting to solve this corrected objective function, we can view the simple
gradient descent and greedy algorithms as implicitly embodying correction terms. In other words,
a greedy algorithm can be viewed as sub-optimal if its objective is to find the smallest decision tree
that fits the data, but it can be viewed as optimal if its objective is to find a tree that minimizes
some combination of decision tree size plus a penalty term that corrects for the difference between
the training data and the ultimate test data. In a few cases, it is possible to prove this equivalence,
but the support for this view is primarily empirical.

I think it is fascinating that by doing a poor job of solving one optimization problem, we are
actually doing a good job of solving a different one. In machine learning, it is optimal to be sub-
optimal! This is fortunate, because the original optimization problems were intractable. In the end,
we have a polynomial-time algorithm that does the right thing. By “undercomputing” we avoid
“overfitting”.

This interaction between computational issues (the complexity of various search problems) and
statistical issues (the need to control overfitting) is one example of the important interplay between
computer science and statistics. I expect that the coming decade will produce more such fruitful
interactions.
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