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Reinforcement Learning is Always Relevant
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The answer to: “Is this an RL problem?’ is always ‘“yes’”.
The implication: RL theory is broadly applicable.

The other implication: RL theory is often only weakly relevant.
(breadth—4relevance=hard.)

Understanding a problem as an RL problem is the beginning to

solving it. Whenever possible, you want to understand how the
problem is special.
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1. Sample Complexity Results

2. Limitations of Sample Complexity



Markov Decision Process (MDP)

. S = the number of states in an MDP

. A = the number of actions/state in an MDP

. T = the horizon time you care about (or v = discount factor)

. O = number of observations

. € = precision parameter



Important Derived Quantities
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the value of being in state s and acting according to =« for ¢
timesteps.
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the value of being in state s, acting with a, and then acting

according to « for t timesteps.

7*(s) = arg max Q?*(s, a)
— recursive definition of optimal policy.

Qi (s,a) = QF (s,a)

= short hand for optimal policy ) values.



The E3 Guarantee

Trace Model = ability to read current state s, take action a,
observe next state s’ and reward r. Notation: TM : A — Sx[0, 1].

Assume MDP(S, A, p(s'|s,a)) with horizon T

1. Original: +assume mixing time 7 = Poly(S, A, 7,1) samples
implies ability to act € optimal for T > .

2. Modified: Poly(S, A, T, %) samples implies ability to act e op-
timal for T timesteps.

(2) + mixing assumption implies (1). (2) holds even for deter-
ministic worlds. We'll go through (2).



E3 Theorem Statement

Theorem: There exist an algorithm E3 such that for all MDP
(S,A, T,p(s'|a,s)) with rewards r € [0,1], with probability 1 — 6,

3
for all except Poly(S, A,T,%,In%) steps QL 1og (s E2(h)) >
T+ mod 7(8) — € where h is the history of observations.

Suboutline:

1. The Algorithm

2. The Proof



The Known(h) MDP

A state s, all actions a leaving s and the probability of their
outcomes is known if all actions a leaving s have been executed
at least n times.

An MDP 0

Probabilit
y 0

Reward
Initially: known MDP = nothing



The Known(h) MDP

Probabilit
y 0

Probability
Reward

Then: Reward

Complete dangling action(s) with one state that always has re-
ward O.



The Known(h) MDP

Probability N
0 Probability

Reward = g
Then: ~ewar



The Known(h) MDP

Probabilit Probabilit
y 0 Y 0

Reward Reward

Finally:

(note: the probabilities are empirical counts)



The Unknown(h) MDP

Unknown(h) = Known(h) except the reward is 1 for actions
which leave the known states and 0 otherwise.



Dynamic Program

Fundamental operation: Given MDP M and state s,

DP(M,s,t) = a,v

where v = the maximum expected T — (¢t mod T') reward sum
and a= action achieving it.

Computation:

DP(M,s,t) = maxEg . p(sq)" + DP(M, st + 1)

DP(M,s,nT) =0



E3(h) Explicit Explore or Exploit Algorithm

1. If last s not in Known(h): choose the least previously used
action
2. Else:

(a) If DP(Unknown(h)) > € then act according DP(Unknown(h))
until state is unknown or t mod T'= 0 then go to (1).

(b) else act according to DP(Known(h)).



The proof uses 5(!) MDPs

. MDP — the true MDP (Imposed by world)

. Known (k) = known MDP (Known by E3 algorithm)

. Unknown(h) = unknown MDP (Known by E3 algorithm)

. MDP;y = MDP restricted to the known states (exists only
in proo%)

. I\/IDPU(h) = MDP restricted to the known states with re-
wards set to O except for escaping rewards. (exists only in
proof)



Proof Sketch:

Simulation Lemma:
1
Poly(S, A, T,In$)

|DP(MDPU/K(h)) — DP((Un)Known(h))| <

Explore/Exploit Lemma:
DP(MDP (y) + TDP(MDPj ;) > DP(MDP)

So n = Poly(S,A,T,In}) implies ability to simulate on known

. . 1 .
states to precision Poly(S,A,T,In%) << e. = Explore/Exploit Lemma

implies DP(MDP) — DP(I\/IDPK(h)) > € = DP(I\/IDPU(h)) > %
=probability about % of encountering new state if exploring.
This can happen only O(”SAT) times (Using the Chernoff bound).

€
Each exploration uses at most 71" steps = proof.




Delayed Q-learning

The theorem can be tightened from Poly(S, A) to O(SA) using
the Delayed Q-learning algorithm.



Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity



The Limits of Sample Complexity: A lower bound

Theorem: Any algorithm A satisfying the E3 statement must
use at least Q(T'SA) actions to explore.

(There are stronger lower bounds, but this is sufficient.)



Proof

A "Key lock" MDP

foo

0 0

States in a chain. One action leads to next state, all the rest
lead to the beginning. The final state has an action with reward
1.



Implications

LLower bound = the really big problems can’'t be solved.

But the problems are solvable: we solve them every day.

=More or different assumptions are required.
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