Reinforcement Learning on MDPs

John Langford

Yahoo Research

Backing Material: http://hunch.net/~jl/tutorial/RL.html

COMS-4771, Columbia

Reinforcement Learning is Always Relevant

The answer to: "Is this an RL problem?" is always "yes".

The implication: RL theory is broadly applicable.

The other implication: RL theory is often only weakly relevant. (breadth+relevance=hard.)

Understanding a problem as an RL problem is the beginning to solving it. Whenever possible, you want to understand how the problem is special.

Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity

Markov Decision Process (MDP)

1. $S=$ the number of states in an MDP
2. $A=$ the number of actions/state in an MDP
3. $T=$ the horizon time you care about (or $\gamma=$ discount factor)
4. $O=$ number of observations
5. $\epsilon=$ precision parameter

Important Derived Quantities

$$
V_{t}^{\pi}(s)=E_{(s, a, r)^{t} \sim \pi, \operatorname{MDP}_{s}}\left[\sum_{t^{\prime}=1}^{t} r_{t^{\prime}}\right]
$$

$=$ the value of being in state s and acting according to π for t timesteps.

$$
Q_{t}^{\pi}(s, a)=E_{(s, a, r)^{t} \sim \pi, \operatorname{MDP}_{s a}}\left[\sum_{t^{\prime}=1}^{t} r_{t^{\prime}}\right]
$$

$=$ the value of being in state s, acting with a, and then acting according to π for t timesteps.

$$
\pi^{*}(s)=\arg \max _{a} Q_{t}^{\pi^{*}}(s, a)
$$

$=$ recursive definition of optimal policy.

$$
Q_{t}^{*}(s, a)=Q_{t}^{\pi^{*}}(s, a)
$$

$=$ short hand for optimal policy Q values.

The E^{3} Guarantee

Trace Model $=$ ability to read current state s, take action a, observe next state s^{\prime} and reward r. Notation: $T M: A \rightarrow S \times[0,1]$.

Assume $\operatorname{MDP}\left(S, A, p\left(s^{\prime} \mid s, a\right)\right)$ with horizon T

1. Original: +assume mixing time $\tau \Rightarrow \operatorname{Poly}\left(S, A, \tau, \frac{1}{\epsilon}\right)$ samples implies ability to act ϵ optimal for $T>\tau$.
2. Modified: $\operatorname{Poly}\left(S, A, T, \frac{1}{\epsilon}\right)$ samples implies ability to act $\epsilon \mathrm{op}$ timal for T timesteps.
(2) + mixing assumption implies (1). (2) holds even for deterministic worlds. We'll go through (2).

E^{3} Theorem Statement

Theorem: There exist an algorithm E^{3} such that for all MDP ($S, A, T, p\left(s^{\prime} \mid a, s\right)$) with rewards $r \in[0,1]$, with probability $1-\delta$, for all except $\operatorname{Poly}\left(S, A, T, \frac{1}{\epsilon}, \ln \frac{1}{\delta}\right)$ steps $Q_{T-t}^{E^{3}} \bmod T\left(s, E^{3}(h)\right) \geq$ $V_{T-t}^{*} \bmod T^{(s)}-\epsilon$ where h is the history of observations.

Suboutline:

1. The Algorithm
2. The Proof

The Known(h) MDP

A state s, all actions a leaving s and the probability of their outcomes is known if all actions a leaving s have been executed at least n times.

Initially: known MDP $=$ nothing

The Known(h) MDP

Then: Reward

Complete dangling action(s) with one state that always has reward 0.

The Known(h) MDP

The Known(h) MDP

(note: the probabilities are empirical counts)

The Unknown (h) MDP

Unknown(h) = Known(h) except the reward is 1 for actions which leave the known states and 0 otherwise.

Dynamic Program

Fundamental operation: Given MDP M and state s,

$$
\mathrm{DP}(M, s, t)=a, v
$$

where $v=$ the maximum expected $T-(t \bmod T)$ reward sum and $a=$ action achieving it.

Computation:

$$
\begin{gathered}
\operatorname{DP}(M, s, t)=\max _{a} E_{s^{\prime}, r \sim M(s, a)^{r}+\operatorname{DP}\left(M, s^{\prime}, t+1\right)}^{\operatorname{DP}(M, s, n T)=0}
\end{gathered}
$$

$E^{3}(h)$ Explicit Explore or Exploit Algorithm

1. If last s not in Known(h): choose the least previously used action
2. Else:
(a) If $\operatorname{DP}(\operatorname{Unknown}(h))>\epsilon^{\prime}$ then act according $\operatorname{DP}($ Unknown $(h))$ until state is unknown or $t \bmod T=0$ then go to (1).
(b) else act according to DP(Known (h)).

The proof uses 5(!) MDPs

1. MDP - the true MDP (Imposed by world)
2. $\operatorname{Known}(h)=$ known MDP (Known by E^{3} algorithm)
3. Unknown $(h)=$ unknown MDP (Known by E^{3} algorithm)
4. $\mathrm{MDP}_{\mathrm{K}(\mathrm{h})}=\mathrm{MDP}$ restricted to the known states (exists only in proof)
5. $\operatorname{MDP} \mathrm{M}_{(h)}=\mathrm{MDP}$ restricted to the known states with rewards set to 0 except for escaping rewards. (exists only in proof)

Proof Sketch:

Simulation Lemma:

$$
\left|\operatorname{DP}\left(\operatorname{MDP}_{\mathrm{U} / \mathrm{K}(h)}\right)-\operatorname{DP}((\mathrm{Un}) \operatorname{Known}(h))\right| \leq \frac{1}{\operatorname{Poly}\left(S, A, T, \ln \frac{1}{\delta}\right)}
$$

Explore/Exploit Lemma:

$$
\mathrm{DP}\left(\mathrm{MDP}_{\mathrm{K}(h)}\right)+T \mathrm{DP}\left(\operatorname{MDP}_{\mathrm{U}(h)}\right) \geq \mathrm{DP}(\mathrm{MDP})
$$

So $n=\operatorname{Poly}\left(S, A, T, \ln \frac{1}{\delta}\right)$ implies ability to simulate on known states to precision $\frac{1}{\operatorname{Poly}\left(S, A, T, \ln \frac{1}{\delta}\right)} \ll \epsilon$. \Rightarrow Explore/Exploit Lemma implies $\operatorname{DP}(\operatorname{MDP})-\operatorname{DP}\left(\operatorname{MDP}_{K(h)}\right)>\epsilon \Rightarrow \operatorname{DP}\left(\operatorname{MDP}_{(h)}\right)>\frac{\epsilon}{T}$ \Rightarrow probability about $\frac{\epsilon}{T}$ of encountering new state if exploring. This can happen only $O\left(\frac{n S A T}{\epsilon}\right)$ times (Using the Chernoff bound). Each exploration uses at most T steps \Rightarrow proof.

Delayed Q-learning

The theorem can be tightened from $\operatorname{Poly}(S, A)$ to $\widetilde{O}(S A)$ using the Delayed Q-learning algorithm.

Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity

The Limits of Sample Complexity: A lower bound

Theorem: Any algorithm A satisfying the E^{3} statement must use at least $\Omega(T S A)$ actions to explore.
(There are stronger lower bounds, but this is sufficient.)

Proof

A "Key lock" MDP

States in a chain. One action leads to next state, all the rest lead to the beginning. The final state has an action with reward 1.

Implications

Lower bound \Rightarrow the really big problems can't be solved.

But the problems are solvable: we solve them every day.
\Rightarrow More or different assumptions are required.

Related Reading

[E^{3}] Michael Kearns and Satinder Singh, "Near Optimal Reinforcement Learning in Polynomial Time", ICML 1998.
[Delayed Q-learning] Alexander Strehl et al, "PAC Model-Free Reinforcement Learning', ICML 2006.
[Sparse Sampling] Michael Kearns, Yishay Mansour, and Andrew Ng, "A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes", IJCAI 1999.
[Many things] Sham Kakade, On the Sample Complexity of Reinforcement Learning Thesis Gatsby, UCL, 2003.

