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Reinfor
ement Learning is Always Relevant

N−armed Bandits

Supervised Learning
Classification

Active Learning
Reinforcement Learning

Markov Decision Process RL

Semi−Supervised Learning



The answer to: �Is this an RL problem?� is always �yes�.The impli
ation: RL theory is broadly appli
able.The other impli
ation: RL theory is often only weakly relevant.(breadth+relevan
e=hard.)Understanding a problem as an RL problem is the beginning tosolving it. Whenever possible, you want to understand how theproblem is spe
ial.



Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity



Markov De
ision Pro
ess (MDP)

1. S = the number of states in an MDP

2. A = the number of a
tions/state in an MDP

3. T = the horizon time you 
are about (or γ = dis
ount fa
tor)

4. O = number of observations

5. ǫ = pre
ision parameter



Important Derived Quantities

V π
t (s) = E(s,a,r)t∼π,MDPs





t
∑

t′=1

rt′



= the value of being in state s and a
ting a

ording to π for ttimesteps.
Qπ

t (s, a) = E(s,a,r)t∼π,MDPsa





t
∑

t′=1

rt′



= the value of being in state s, a
ting with a, and then a
tinga

ording to π for t timesteps.
π∗(s) = argmax

a
Qπ∗

t (s, a)= re
ursive de�nition of optimal poli
y.
Q∗

t (s, a) = Qπ∗

t (s, a)= short hand for optimal poli
y Q values.



The E3 GuaranteeTra
e Model = ability to read 
urrent state s, take a
tion a,observe next state s′ and reward r. Notation: TM : A → S×[0,1].Assume MDP(S, A, p(s′|s, a)) with horizon T

1. Original: +assume mixing time τ ⇒ Poly(S, A, τ, 1
ǫ
) samplesimplies ability to a
t ǫ optimal for T > τ .

2. Modi�ed: Poly(S, A, T, 1
ǫ
) samples implies ability to a
t ǫ op-timal for T timesteps.

(2) + mixing assumption implies (1). (2) holds even for deter-ministi
 worlds. We'll go through (2).



E3 Theorem StatementTheorem: There exist an algorithm E3 su
h that for all MDP

(S, A, T, p(s′|a, s)) with rewards r ∈ [0,1], with probability 1 − δ,for all ex
ept Poly(

S, A, T, 1
ǫ
, ln 1

δ

) steps QE3

T−t mod T
(s, E3(h)) ≥

V ∗
T−t mod T

(s) − ǫ where h is the history of observations.Suboutline:
1. The Algorithm

2. The Proof



The Known(h) MDPA state s, all a
tions a leaving s and the probability of theirout
omes is known if all a
tions a leaving s have been exe
utedat least n times.
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Initially: known MDP = nothing



The Known(h) MDP
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tion(s) with one state that always has re-ward 0.



The Known(h) MDP
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The Known(h) MDP
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Finally:
s s

s

a

a

a

aa
a

1 2
1

2

1

2

1

2

3

0 0

0
Probability
Action
Reward

0

1
0

0.42
0.58

(note: the probabilities are empiri
al 
ounts)



The Unknown(h) MDPUnknown(h) = Known(h) ex
ept the reward is 1 for a
tionswhi
h leave the known states and 0 otherwise.



Dynami
 ProgramFundamental operation: Given MDP M and state s,DP(M, s, t) = a, vwhere v = the maximum expe
ted T − (t mod T) reward sumand a= a
tion a
hieving it.Computation:DP(M, s, t) = max
a

Es′,r∼M(s,a)r +DP(M, s′, t + 1)DP(M, s, nT) = 0



E3(h) Expli
it Explore or Exploit Algorithm

1. If last s not in Known(h): 
hoose the least previously useda
tion
2. Else:(a) If DP(Unknown(h)) > ǫ′ then a
t a

ording DP(Unknown(h))until state is unknown or t mod T = 0 then go to (1).(b) else a
t a

ording to DP(Known(h)).



The proof uses 5(!) MDPs1. MDP � the true MDP (Imposed by world)2. Known(h) = known MDP (Known by E3 algorithm)3. Unknown(h) = unknown MDP (Known by E3 algorithm)4. MDPK(h) = MDP restri
ted to the known states (exists onlyin proof)5. MDPU(h) = MDP restri
ted to the known states with re-wards set to 0 ex
ept for es
aping rewards. (exists only inproof)



Proof Sket
h:Simulation Lemma:
|DP(MDPU/K(h)

) −DP((Un)Known(h))| ≤
1Poly(S, A, T, ln 1

δ
)Explore/Exploit Lemma:DP(MDPK(h)) + TDP(MDPU(h)) ≥ DP(MDP)So n = Poly(S, A, T, ln 1

δ
) implies ability to simulate on knownstates to pre
ision 1Poly(S,A,T,ln 1

δ
)

<< ǫ. ⇒ Explore/Exploit Lemmaimplies DP(MDP) − DP(MDPK(h)) > ǫ ⇒ DP(MDPU(h)) > ǫ
T

⇒probability about ǫ
T

of en
ountering new state if exploring.This 
an happen only O(nSAT
ǫ

) times (Using the Cherno� bound).Ea
h exploration uses at most T steps ⇒ proof.



Delayed Q-learningThe theorem 
an be tightened from Poly(S, A) to Õ(SA) usingthe Delayed Q-learning algorithm.



Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity



The Limits of Sample Complexity: A lower boundTheorem: Any algorithm A satisfying the E3 statement mustuse at least Ω(TSA) a
tions to explore.(There are stronger lower bounds, but this is su�
ient.)



Proof

A "Key lock" MDP
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tion leads to next state, all the restlead to the beginning. The �nal state has an a
tion with reward
1.



Impli
ationsLower bound ⇒ the really big problems 
an't be solved.But the problems are solvable: we solve them every day.

⇒More or di�erent assumptions are required.
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