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Reinforement Learning is Always Relevant

N−armed Bandits

Supervised Learning
Classification

Active Learning
Reinforcement Learning

Markov Decision Process RL

Semi−Supervised Learning



The answer to: �Is this an RL problem?� is always �yes�.The impliation: RL theory is broadly appliable.The other impliation: RL theory is often only weakly relevant.(breadth+relevane=hard.)Understanding a problem as an RL problem is the beginning tosolving it. Whenever possible, you want to understand how theproblem is speial.



Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity



Markov Deision Proess (MDP)

1. S = the number of states in an MDP

2. A = the number of ations/state in an MDP

3. T = the horizon time you are about (or γ = disount fator)

4. O = number of observations

5. ǫ = preision parameter



Important Derived Quantities

V π
t (s) = E(s,a,r)t∼π,MDPs





t
∑

t′=1

rt′



= the value of being in state s and ating aording to π for ttimesteps.
Qπ

t (s, a) = E(s,a,r)t∼π,MDPsa





t
∑

t′=1

rt′



= the value of being in state s, ating with a, and then atingaording to π for t timesteps.
π∗(s) = argmax

a
Qπ∗

t (s, a)= reursive de�nition of optimal poliy.
Q∗

t (s, a) = Qπ∗

t (s, a)= short hand for optimal poliy Q values.



The E3 GuaranteeTrae Model = ability to read urrent state s, take ation a,observe next state s′ and reward r. Notation: TM : A → S×[0,1].Assume MDP(S, A, p(s′|s, a)) with horizon T

1. Original: +assume mixing time τ ⇒ Poly(S, A, τ, 1
ǫ
) samplesimplies ability to at ǫ optimal for T > τ .

2. Modi�ed: Poly(S, A, T, 1
ǫ
) samples implies ability to at ǫ op-timal for T timesteps.

(2) + mixing assumption implies (1). (2) holds even for deter-ministi worlds. We'll go through (2).



E3 Theorem StatementTheorem: There exist an algorithm E3 suh that for all MDP

(S, A, T, p(s′|a, s)) with rewards r ∈ [0,1], with probability 1 − δ,for all exept Poly(

S, A, T, 1
ǫ
, ln 1

δ

) steps QE3

T−t mod T
(s, E3(h)) ≥

V ∗
T−t mod T

(s) − ǫ where h is the history of observations.Suboutline:
1. The Algorithm

2. The Proof



The Known(h) MDPA state s, all ations a leaving s and the probability of theiroutomes is known if all ations a leaving s have been exeutedat least n times.
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Initially: known MDP = nothing



The Known(h) MDP
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Complete dangling ation(s) with one state that always has re-ward 0.



The Known(h) MDP
s s
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The Known(h) MDP
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Finally:
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(note: the probabilities are empirial ounts)



The Unknown(h) MDPUnknown(h) = Known(h) exept the reward is 1 for ationswhih leave the known states and 0 otherwise.



Dynami ProgramFundamental operation: Given MDP M and state s,DP(M, s, t) = a, vwhere v = the maximum expeted T − (t mod T) reward sumand a= ation ahieving it.Computation:DP(M, s, t) = max
a

Es′,r∼M(s,a)r +DP(M, s′, t + 1)DP(M, s, nT) = 0



E3(h) Expliit Explore or Exploit Algorithm

1. If last s not in Known(h): hoose the least previously usedation
2. Else:(a) If DP(Unknown(h)) > ǫ′ then at aording DP(Unknown(h))until state is unknown or t mod T = 0 then go to (1).(b) else at aording to DP(Known(h)).



The proof uses 5(!) MDPs1. MDP � the true MDP (Imposed by world)2. Known(h) = known MDP (Known by E3 algorithm)3. Unknown(h) = unknown MDP (Known by E3 algorithm)4. MDPK(h) = MDP restrited to the known states (exists onlyin proof)5. MDPU(h) = MDP restrited to the known states with re-wards set to 0 exept for esaping rewards. (exists only inproof)



Proof Sketh:Simulation Lemma:
|DP(MDPU/K(h)

) −DP((Un)Known(h))| ≤
1Poly(S, A, T, ln 1

δ
)Explore/Exploit Lemma:DP(MDPK(h)) + TDP(MDPU(h)) ≥ DP(MDP)So n = Poly(S, A, T, ln 1

δ
) implies ability to simulate on knownstates to preision 1Poly(S,A,T,ln 1

δ
)

<< ǫ. ⇒ Explore/Exploit Lemmaimplies DP(MDP) − DP(MDPK(h)) > ǫ ⇒ DP(MDPU(h)) > ǫ
T

⇒probability about ǫ
T

of enountering new state if exploring.This an happen only O(nSAT
ǫ

) times (Using the Cherno� bound).Eah exploration uses at most T steps ⇒ proof.



Delayed Q-learningThe theorem an be tightened from Poly(S, A) to Õ(SA) usingthe Delayed Q-learning algorithm.



Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity



The Limits of Sample Complexity: A lower boundTheorem: Any algorithm A satisfying the E3 statement mustuse at least Ω(TSA) ations to explore.(There are stronger lower bounds, but this is su�ient.)



Proof

A "Key lock" MDP
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States in a hain. One ation leads to next state, all the restlead to the beginning. The �nal state has an ation with reward
1.



ImpliationsLower bound ⇒ the really big problems an't be solved.But the problems are solvable: we solve them every day.

⇒More or di�erent assumptions are required.
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