
Reinforcement Learning:
A Tutorial

Satinder Singh

Computer Science & Engineering
University of Michigan, Ann Arbor

http://www.eecs.umich.edu/~baveja/ICML06Tutorial/

Outline

• What is RL?

• Markov Decision Processes (MDPs)

• Planning in MDPs

• Learning in MDPs

• Function Approximation and RL

• Partially Observable MDPs (POMDPs)

• Beyond MDP/POMDPs

RL is Learning from Interaction

Environment

actionperception

reward
Agent

• complete agent

• temporally situated

• continual learning and planning

• object is to affect environment

• environment is stochastic and uncertain

RL is like Life!

RL is Learning from Interaction

Environment

actionperception

reward
Agent

• complete agent

• temporally situated

• continual learning and planning

• object is to affect environment

• environment is stochastic and uncertain

RL is like Life!

RL (another view)

Agent chooses actions so as to maximize expected
cumulative reward over a time horizon

Observations can be vectors or other structures
Actions can be multi-dimensional
Rewards are scalar & can be arbitrarily uninformative

Agent has partial knowledge about its environment

Agent’s life Unit of experience

RL and Machine Learning

1. Supervised Learning (error correction)

• learning approaches to regression & classification
• learning from examples, learning from a teacher

2. Unsupervised Learning
• learning approaches to dimensionality reduction, density

estimation, recoding data based on some principle, etc.

3. Reinforcement Learning
• learning approaches to sequential decision making
• learning from a critic, learning from delayed reward

Some Key Ideas in RL

• Temporal Differences (or updating a guess on the
basis of another guess)

• Eligibility traces

• Off-policy learning

• Function approximation for RL

• Hierarchical RL (options)

• Going beyond MDPs/POMDPs towards AI

Model of Agent-Environment Interaction

Model?

Discrete time
Discrete observations

Discrete actions

Markov Decision Processes
(MDPs)

Markov Assumption:
Markov Assumption

MDP Preliminaries

• S: finite state space
A: finite action space
P: transition probabilities P(i|j,a) [or Pa(ij)]
R: payoff function R(i) or R(i,a)
 : deterministic non-stationary policy S -> A
 :return for policy when started in state i

Discounted framework

Also, average framework: Vπ = LimT → ∞ Eπ1/T {r0 + r1 + … + rT}

MDP Preliminaries...

• In MDPs there always exists a deterministic
stationary policy (that simultaneously maximizes
the value of every state)

;

Bellman Optimality Equations

Policy Evaluation (Prediction)

Markov assumption!

Bellman Optimality Equations

Optimal Control

Graphical View of MDPs
state

state

state

state

action

action

action

Temporal Credit Assignment Problem!!

Learning from Delayed Reward

Distinguishes RL from other forms of ML

Planning & Learning
in

MDPs

Planning in MDPs

• Given an exact model (i.e., reward function,
transition probabilities), and a fixed policy

For k = 0,1,2,...

Value Iteration (Policy Evaluation)

Stopping criterion:

Arbitrary initialization: V0

Planning in MDPs

Given a exact model (i.e., reward function, transition
probabilities), and a fixed policy

For k = 0,1,2,...

Value Iteration (Policy Evaluation)

Stopping criterion:

Arbitrary initialization: Q0

Planning in MDPs

Given a exact model (i.e., reward function, transition
probabilities)

For k = 0,1,2,...

Value Iteration (Optimal Control)

Stopping criterion:

Convergence of Value Iteration

*

1

2

3

4

Contractions!

Proof of the DP contraction

Learning in MDPs
• Have access to the “real

system” but no model

state

state

state

state

action

action

action

Generate experience

Two classes of approaches:
 1. Indirect methods

2. Direct methods

This is what life looks like!

Indirect Methods for Learning in MDPs
• Use experience data to estimate model

• Compute optimal policy w.r.to estimated model
(Certainly equivalent policy)

• Exploration-Exploitation Dilemma

Parametric models

Model converges asymptotically provided all state-action pairs
are visited infinitely often in the limit; hence certainty equivalent
policy converges asymptotically to the optimal policy

Q-Learning

s0a0r0 s1a1r1 s2a2r2 s3a3r3… skakrk…

A unit of experience < sk ak rk sk+1 >

Update:

 Qnew(sk,ak) = (1-!) Qold(sk,ak) +

 ![rk + " maxb Qold(sk+1,b)]

Watkins, 1988

step-size

Big table of Q-values?

Direct Method:

Only updates state-action pairs
that are visited...

Q-Learning

s0a0r0 s1a1r1 s2a2r2 s3a3r3… skakrk…

A unit of experience < sk ak rk sk+1 >

Update:

 Qnew(sk,ak) = (1-!) Qold(sk,ak) +

 ![rk + " maxb Qold(sk+1,b)]

Watkins, 1988

step-size

Big table of Q-values?

So far...
• Q-Learning is the first provably convergent direct

adaptive optimal control algorithm

• Great impact on the field of modern
Reinforcement Learning

• smaller representation than models

• automatically focuses attention to where it is
needed, i.e., no sweeps through state space

• though does not solve the exploration versus
exploitation dilemma

• epsilon-greedy, optimistic initialization, etc,...

Monte Carlo?

Start at state s and execute the policy for a long
trajectory and compute the empirical discounted return

Do this several times and average the returns across
trajectories

Suppose you want to find for some fixed state s

How many trajectories?

Unbiased estimate whose variance improves with n

Sparse Sampling

Use generative model
to generate depth ‘n’ tree
with ‘m’ samples for each action
in each state generated

Near-optimal action at root state in
 time independent of the size of state space

(but, exponential in horizon!)
Kearns, Mansour & Ng

Summary
• Space of Algorithms:

• (does not need a model) linear in horizon +
polynomial in states

• (needs generative model) Independent of
states + exponential in horizon

• (needs generative model) time complexity
depends on the complexity of policy class

Eligibility Traces
(another key idea in RL)

Eligibility Traces

• The policy evaluation problem: given a (in
general stochastic) policy !, estimate

 V!(i) = E!{r0+ "r1 + "2r2 + "3r3+… | s0=i}

 from multiple experience trajectories
generated by following policy ! repeatedly
from state i

 A single trajectory:

 r0 r1 r2 r3 …. rk rk+1 ….

Eligibility Traces

• The policy evaluation problem: given a (in
general stochastic) policy !, estimate

 V!(i) = E!{r0+ "r1 + "2r2 + "3r3+… | s0=i}

 from multiple experience trajectories
generated by following policy ! repeatedly
from state i

 A single trajectory:

 r0 r1 r2 r3 …. rk rk+1 ….

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)0-step (e0):

temporal difference

Vnew(s0) = Vold(s0) + # [r0 + "Vold(s1) - Vold(s0)]

Vnew(s0) = Vold(s0) + # [e0 - Vold(s0)]

TD(0)

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)0-step (e0):

temporal difference

Vnew(s0) = Vold(s0) + # [r0 + "Vold(s1) - Vold(s0)]

Vnew(s0) = Vold(s0) + # [e0 - Vold(s0)]

TD(0)

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)

r0 + "r1 + "2V(s2)1-step (e1):

Vnew(s0) = Vold(s0) + # [e1 - Vold(s0)]

 Vold(s0) + # [r0 + "r1 + "2Vold(s2) - Vold(s0)]

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)

r0 + "r1 + "2V(s2)1-step (e1):

Vnew(s0) = Vold(s0) + # [e1 - Vold(s0)]

 Vold(s0) + # [r0 + "r1 + "2Vold(s2) - Vold(s0)]

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)

r0 + "r1 + "2V(s2)

r0 + "r1 + "2r2
 + "3V(s3)e2:

r0 + "r1 + "2r2
 + "3r3 + … "k-1rk-1 + "k V(sk)ek-1:

r0 + "r1 + "2r2
 + "3r3 + … "k rk + "k+1 rk+1 + …e#:

e1:

e0:w0

w1

w2

wk-1

w#

Vnew(s0) = Vold(s0) + $ [%k wk ek - Vold(s0)]

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)

r0 + "r1 + "2V(s2)

r0 + "r1 + "2r2
 + "3V(s3)e2:

r0 + "r1 + "2r2
 + "3r3 + … "k-1rk-1 + "k V(sk)ek-1:

r0 + "r1 + "2r2
 + "3r3 + … "k rk + "k+1 rk+1 + …e#:

e1:

e0:w0

w1

w2

wk-1

w#

Vnew(s0) = Vold(s0) + $ [%k wk ek - Vold(s0)]

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)

r0 + "r1 + "2V(s2)

r0 + "r1 + "2r2
 + "3V(s3)

r0 + "r1 + "2r2
 + "3r3 + … "k-1rk-1 + "k V(sk)

Vnew(s0) = Vold(s0) + # [$k (1-!)!k ek - Vold(s0)]

(1-!)!2

(1-!)!

(1-!)

(1-!)!k-1

0 % ! % 1 interpolates between 1-step TD and Monte-Carlo
TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1)

r0 + "r1 + "2V(s2)

r0 + "r1 + "2r2
 + "3V(s3)

r0 + "r1 + "2r2
 + "3r3 + … "k-1rk-1 + "k V(sk)

Vnew(s0) = Vold(s0) + # [$k (1-!)!k ek - Vold(s0)]

(1-!)!2

(1-!)!

(1-!)

(1-!)!k-1

0 % ! % 1 interpolates between 1-step TD and Monte-Carlo

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1) - V(s0)#0

Vnew(s0) = Vold(s0) + $ [%k (1-!)!k #k]

 r1 + "V(s2) - V(s1)#1

 r2
 + "V(s3) - V(s2)#2

 rk-1 + "V(sk)-V(sk-1)
#k

eligibility

trace

w.p.1 convergence (Jaakkola, Jordan & Singh)

TD(!)

r0 r1 r2 r3 …. rk rk+1 ….

r0 + "V(s1) - V(s0)#0

Vnew(s0) = Vold(s0) + $ [%k (1-!)!k #k]

 r1 + "V(s2) - V(s1)#1

 r2
 + "V(s3) - V(s2)#2

 rk-1 + "V(sk)-V(sk-1)
#k

eligibility

trace

w.p.1 convergence (Jaakkola, Jordan & Singh)

Bias-Variance Tradeoff
r0 r1 r2 r3 …. rk rk+1 ….

r0 + !V(s1)

r0 + !r1 + !2V(s2)

r0 + !r1 + !2r2
 + !3V(s3)e2:

r0 + !r1 + !2r2
 + !3r3 + … !k-1rk-1 + !k V(sk)ek-1:

r0 + !r1 + !2r2
 + !3r3 + … !k rk + !k+1 rk+1 + …e":

e1:

e0:

increasing

variance

decreasing

bias

Bias-Variance Tradeoff
r0 r1 r2 r3 …. rk rk+1 ….

r0 + !V(s1)

r0 + !r1 + !2V(s2)

r0 + !r1 + !2r2
 + !3V(s3)e2:

r0 + !r1 + !2r2
 + !3r3 + … !k-1rk-1 + !k V(sk)ek-1:

r0 + !r1 + !2r2
 + !3r3 + … !k rk + !k+1 rk+1 + …e":

e1:

e0:

increasing

variance

decreasing

bias

TD()

Bias-Variance Tradeoff

Intuition: start with large ! and then decrease over time"

error
t
a!

1$ b!
t

1$ b!
+ b!

t

t%&, error asymptotes at
a!

1- b!
(an increasing function of !)

Rate of convergence is b!
t (exponential)

b! is a decreasing function of !

Kearns & Singh, 2000

Constant step-size

Bias-Variance Tradeoff

Intuition: start with large ! and then decrease over time"

error
t
a!

1$ b!
t

1$ b!
+ b!

t

t%&, error asymptotes at
a!

1- b!
(an increasing function of !)

Rate of convergence is b!
t (exponential)

b! is a decreasing function of !

Kearns & Singh, 2000

Constant step-size

Near-Optimal
Reinforcement Learning in

Polynomial Time
(solving the exploration versus exploitation dilemma)

Function Approximation
and

Reinforcement Learning

General Idea

Function
Approximator

s

a

Could be:

• table

• Backprop Neural Network

• Radial-Basis-Function Network

• Tile Coding (CMAC)

• Nearest Neighbor, Memory Based

• Decision Tree

gradient-
descent
methods

targets or errors

 Q(s,a)

Function
Approximator

s

a

Could be:

• table

• Backprop Neural Network

• Radial-Basis-Function Network

• Tile Coding (CMAC)

• Nearest Neighbor, Memory Based

• Decision Tree

gradient-
descent
methods

targets or errors

 Q(s,a)

Neural Networks as FAs

estimated value

w ! w + " r
t +1 + #Q(st+1,at +1) $Q(st ,at)[] %w f (st ,at ,w)

Q(s,a) = f (s,a,w)

e.g., gradient-descent Sarsa:

target value

weight vector

standard
backprop
gradient

estimated value

w ! w + " r
t +1 + #Q(st+1,at +1) $Q(st ,at)[] %w f (st ,at ,w)

Q(s,a) = f (s,a,w)

e.g., gradient-descent Sarsa:

target value

weight vector

standard
backprop
gradient

Linear in the Parameters FAs

ˆ V (s) =

r
!

T
r
" s

r
!

ˆ V (s) =
r
" s

Each state s represented by a feature vector

Or represent a state-action pair with

and approximate action values:

r
" s

Q

$
(s, a) = E r

1
+ %r

2
+ %

2
r
3

+L s
t
= s, a

t
= a,$

ˆ Q (s,a) =

r
!

T
r
" s,a

r
" sa

ˆ V (s) =

r
!

T
r
" s

r
!

ˆ V (s) =
r
" s

Each state s represented by a feature vector

Or represent a state-action pair with

and approximate action values:

r
" s

Q

$
(s, a) = E r

1
+ %r

2
+ %

2
r
3

+L s
t
= s, a

t
= a,$

ˆ Q (s,a) =

r
!

T
r
" s,a

r
" sa

Sparse Coarse Coding

fixed expansive

Re-representation

Linear
last
layer

Coarse: Large receptive fields

Sparse: Few features present at one time

features

.

.

.

.

.

.

.

.

.

.

.

Shaping Generalization in Coarse
Coding

Shaping Generalization in Coarse
Coding

FAs & RL

• Linear FA (divergence can happen)
Nonlinear Neural Networks (theory is not well developed)
Non-parametric, e.g., nearest-neighbor (provably not
divergent; bounds on error)
Everyone uses their favorite FA… little theoretical
guidance yet!

• Does FA really beat the curse of dimensionality?

• Probably; with FA, computation seems to scale with the
complexity of the solution (crinkliness of the value function) and
how hard it is to find it

• Empirically it works

• though many folks have a hard time making it so

• no off-the-shelf FA+RL yet

Off-Policy Learning

• Learning about a way of behaving
while behaving in some other way

Importance Sampling
• Behave according to policy µ

• Evaluate policy π

• Episode (e): s0 a0 r1 s1 r2 … sT-1 aT-1 rT sT

• Pr(e|π) = ΠT-1
k = 0 π(ak | sk) Pr(sk+1|sk,ak)

• Importance Sampling Ratio:

High variance

Off-Policy with Linear
Function Approximation

Precup, Sutton & Dasgupta

After MDPs...

• Great success with MDPs

• What next?

• Rethinking Actions, States, Rewards

• Options instead of actions

• POMDPs

Rethinking Action
(Hierarchical RL)

Options
(Precup, Sutton, Singh)

MAXQ by Dietterich
HAMs by Parr & Russell

Abstraction in Learning and Planning

• A long-standing, key problem in AI !

• How can we give abstract knowledge a clear semantics?

e.g. “I could go to the library”

• How can different levels of abstraction be related?

! spatial: states

! temporal: time scales

• How can we handle stochastic, closed-loop, temporally

extended courses of action?

• Use RL/MDPs to provide a theoretical foundation

Abstraction in Learning and Planning

• A long-standing, key problem in AI !

• How can we give abstract knowledge a clear semantics?

e.g. “I could go to the library”

• How can different levels of abstraction be related?

! spatial: states

! temporal: time scales

• How can we handle stochastic, closed-loop, temporally

extended courses of action?

• Use RL/MDPs to provide a theoretical foundation

Options

Example: docking

 ! : hand-crafted controller

" : terminate when docked or charger not visible

Options can take variable number of steps

A generalization of actions to include courses of action

Option execution is assumed to be call-and-return

An option is a triple o =< I,! ," >

• I$S is the set of states in which o may be started

• ! :S%A& [0,1] is the policy followed during o

• " :S& [0,1] is the probability of terminating in each state

I : all states in which charger is in sight

Options

Example: docking

 ! : hand-crafted controller

" : terminate when docked or charger not visible

Options can take variable number of steps

A generalization of actions to include courses of action

Option execution is assumed to be call-and-return

An option is a triple o =< I,! ," >

• I$S is the set of states in which o may be started

• ! :S%A& [0,1] is the policy followed during o

• " :S& [0,1] is the probability of terminating in each state

I : all states in which charger is in sight

Rooms Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location,

quickly plan shortest route

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable
primitive actions

Fail 33%
of the time

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM

Rooms Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location,

quickly plan shortest route

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable
primitive actions

Fail 33%
of the time

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM

Options define a Semi-Markov Decison

Process (SMDP)

Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP

Options

over MDP

State

Time

Options define a Semi-Markov Decison

Process (SMDP)

Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP

Options

over MDP

State

Time

MDP + Options = SMDP

Thus all Bellman equations and DP results extend for

value functions over options and models of options

(cf. SMDP theory).

Theorem:

For any MDP,

and any set of options,
the decision process that chooses among the options,
executing each to termination,
is an SMDP.

MDP + Options = SMDP

Thus all Bellman equations and DP results extend for

value functions over options and models of options

(cf. SMDP theory).

Theorem:

For any MDP,

and any set of options,
the decision process that chooses among the options,
executing each to termination,
is an SMDP.

What does the SMDP connection give us?

!

• Policies over options : µ :S"O# [0,1]

• Value functions over options : V µ (s),Qµ (s,o),VO

*(s),QO

* (s,o)

• Learning methods : Bradtke & Duff (1995), Parr (1998)

• Models of options

• Planning methods : e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of

 action at variable time scales, yet at the same level

A theoretical fondation for what we really need!

But the most interesting issues are beyond SMDPs...
What does the SMDP connection give us?

!

• Policies over options : µ :S"O# [0,1]

• Value functions over options : V µ (s),Qµ (s,o),VO

*(s),QO

* (s,o)

• Learning methods : Bradtke & Duff (1995), Parr (1998)

• Models of options

• Planning methods : e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of

 action at variable time scales, yet at the same level

A theoretical fondation for what we really need!

But the most interesting issues are beyond SMDPs...

Value Functions for Options

Define value functions for options, similar to the MDP case

V µ
(s) = E {rt+1 + ! rt+2 + ... | E(µ,s,t)}

Q µ
(s,o) = E {rt+1 + ! rt+2 + ... | E(oµ,s,t)}

Now consider policies µ "#(O) restricted to choose only

from options in O :

VO

*
(s) = max

µ"# (O)
V µ
(s)

QO

*
(s,o) = max

µ"#(O)
Qµ
(s,o)

Value Functions for Options

Define value functions for options, similar to the MDP case

V µ
(s) = E {rt+1 + ! rt+2 + ... | E(µ,s,t)}

Q µ
(s,o) = E {rt+1 + ! rt+2 + ... | E(oµ,s,t)}

Now consider policies µ "#(O) restricted to choose only

from options in O :

VO

*
(s) = max

µ"# (O)
V µ
(s)

QO

*
(s,o) = max

µ"#(O)
Qµ
(s,o)

Models of Options

Knowing how an option is executed is not enough for reasoning about
it, or planning with it. We need information about its consequences

!

The model of the consequences of starting option o in state s has :

• a reward part

 rs
o

= E{r1 + "r2 + ...+ " k#1
rk | s0 = s, o taken in s0, lasts k steps}

• a next - state part

 pss'
o

= E{" k$sks' | s0 = s, o taken in s0, lasts k steps}

 %
 1 if s'= sk is the termination state, 0 otherwise

This form follows from SMDP theory. Such models can be used
interchangeably with models of primitive actions in Bellman equations.

Models of Options

Knowing how an option is executed is not enough for reasoning about
it, or planning with it. We need information about its consequences

!

The model of the consequences of starting option o in state s has :

• a reward part

 rs
o

= E{r1 + "r2 + ...+ " k#1
rk | s0 = s, o taken in s0, lasts k steps}

• a next - state part

 pss'
o

= E{" k$sks' | s0 = s, o taken in s0, lasts k steps}

 %
 1 if s'= sk is the termination state, 0 otherwise

This form follows from SMDP theory. Such models can be used
interchangeably with models of primitive actions in Bellman equations.

Room Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location,

quickly plan shortest route

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable
primitive actions

Fail 33%
of the time

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM

Room Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location,

quickly plan shortest route

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable
primitive actions

Fail 33%
of the time

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM

Example: Synchronous Value Iteration

Generalized to Options

!

Initialize : V0(s)" 0 #s$ S

Iterate : Vk+1(s)" max
o$O

[rs
o + pss'

o

s'$S

% Vk (s')] #s$ S

The algorithm converges to the optimal value function,given the options :

 lim
k&'

Vk =VO

*

Once VO

* is computed, µO

* is readily determined.

If O = A, the algorithm reduces to conventional value iteration

If A (O, then VO

* =V *

Example: Synchronous Value Iteration

Generalized to Options

!

Initialize : V0(s)" 0 #s$ S

Iterate : Vk+1(s)" max
o$O

[rs
o + pss'

o

s'$S

% Vk (s')] #s$ S

The algorithm converges to the optimal value function,given the options :

 lim
k&'

Vk =VO

*

Once VO

* is computed, µO

* is readily determined.

If O = A, the algorithm reduces to conventional value iteration

If A (O, then VO

* =V *

Rooms Example

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal)=1

V(goal)=1

Rooms Example

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal)=1

V(goal)=1

Example with Goal!Subgoal

both primitive actions and options

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5

Example with Goal!Subgoal

both primitive actions and options

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5

What does the SMDP connection give us?

• Policies over options : µ :S !O a [0,1]

• Value functions over options : Vµ
(s),Qµ

(s,o),VO

*
(s),QO

*
(s,o)

• Learning methods : Bradtke & Duff (1995), Parr (1998)

• Models of options

• Planning methods : e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of

 action at variable time scales, yet at the same level

A theoretical foundation for what we really need!

But the most interesting issues are beyond SMDPs...
What does the SMDP connection give us?

• Policies over options : µ :S !O a [0,1]

• Value functions over options : Vµ
(s),Qµ

(s,o),VO

*
(s),QO

*
(s,o)

• Learning methods : Bradtke & Duff (1995), Parr (1998)

• Models of options

• Planning methods : e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of

 action at variable time scales, yet at the same level

A theoretical foundation for what we really need!

But the most interesting issues are beyond SMDPs...

Advantages of Dual MDP/SMDP View

At the SMDP level

Compute value functions and policies over options
with the benefit of increased speed / flexibility

At the MDP level

Learn how to execute an option for achieving a

given goal

Between the MDP and SMDP level

Improve over existing options (e.g. by terminating early)

Learn about the effects of several options in parallel,

without executing them to termination
Advantages of Dual MDP/SMDP View

At the SMDP level

Compute value functions and policies over options
with the benefit of increased speed / flexibility

At the MDP level

Learn how to execute an option for achieving a

given goal

Between the MDP and SMDP level

Improve over existing options (e.g. by terminating early)

Learn about the effects of several options in parallel,

without executing them to termination

Between MDPs and SMDPs

• Termination Improvement

 Improving the value function by changing the termination

 conditions of options

• Intra-Option Learning

 Learning the values of options in parallel, without executing them

 to termination

 Learning the models of options in parallel, without executing

 them to termination

• Tasks and Subgoals

 Learning the policies inside the options

Between MDPs and SMDPs

• Termination Improvement

 Improving the value function by changing the termination

 conditions of options

• Intra-Option Learning

 Learning the values of options in parallel, without executing them

 to termination

 Learning the models of options in parallel, without executing

 them to termination

• Tasks and Subgoals

 Learning the policies inside the options

Termination Improvement

Idea: We can do better by sometimes interrupting ongoing options
- forcing them to terminate before ! says to

"

Theorem : For any policy over options µ :S#O$ [0,1],
 suppose we interrupt its options one or more times, when

 Q
µ
(s,o) <Qµ

(s,µ(s)), where s is the state at that time
 o is the ongoing option
 to obtain µ':S#O '$ [0,1],

 Then µ' > µ (it attains more or equal reward everywhere)

Application : Suppose we have determined QO

* and thus µ = µO

* .

 Then µ' is guaranteed better than µO

*

 and is available with no additional computation.

Termination Improvement

Idea: We can do better by sometimes interrupting ongoing options
- forcing them to terminate before ! says to

"

Theorem : For any policy over options µ :S#O$ [0,1],
 suppose we interrupt its options one or more times, when

 Q
µ
(s,o) <Qµ

(s,µ(s)), where s is the state at that time
 o is the ongoing option
 to obtain µ':S#O '$ [0,1],

 Then µ' > µ (it attains more or equal reward everywhere)

Application : Suppose we have determined QO

* and thus µ = µO

* .

 Then µ' is guaranteed better than µO

*

 and is available with no additional computation.

range (input set) of each
run-to-landmark controller

landmarks

S

G

Landmarks Task

Task: navigate from S to G as
fast as possible

4 primitive actions, for taking
tiny steps up, down, left, right

7 controllers for going straight
to each one of the landmarks,
from within a circular region
where the landmark is visible

In this task, planning at the level of primitive actions is
computationally intractable, we need the controllers

range (input set) of each
run-to-landmark controller

landmarks

S

G

Landmarks Task

Task: navigate from S to G as
fast as possible

4 primitive actions, for taking
tiny steps up, down, left, right

7 controllers for going straight
to each one of the landmarks,
from within a circular region
where the landmark is visible

In this task, planning at the level of primitive actions is
computationally intractable, we need the controllers

Illustration: Reconnaissance
Mission Planning (Problem)

• Mission: Fly over (observe) most
valuable sites and return to base

• Stochastic weather affects
observability (cloudy or clear) of sites

• Limited fuel

• Intractable with classical optimal
control methods

• Temporal scales:

! Actions: which direction to fly now

! Options: which site to head for

• Options compress space and time

! Reduce steps from ~600 to ~6

! Reduce states from ~1011 to ~106

Q
O

*
(s, o) = rs

o
+ ps ! s

o
V

O

*
(! s)

! s

"
any state (106) sites only (6)

10

50

50

50

100

25

15 (reward)

5

25

8

Base
100 decision steps

options

(mean time between

 weather changes)

Illustration: Reconnaissance
Mission Planning (Problem)

• Mission: Fly over (observe) most
valuable sites and return to base

• Stochastic weather affects
observability (cloudy or clear) of sites

• Limited fuel

• Intractable with classical optimal
control methods

• Temporal scales:

! Actions: which direction to fly now

! Options: which site to head for

• Options compress space and time

! Reduce steps from ~600 to ~6

! Reduce states from ~1011 to ~106

Q
O

*
(s, o) = rs

o
+ ps ! s

o
V

O

*
(! s)

! s

"
any state (106) sites only (6)

10

50

50

50

100

25

15 (reward)

5

25

8

Base
100 decision steps

options

(mean time between

 weather changes)

30

40

50

60

Illustration: Reconnaissance
Mission Planning (Results)

• SMDP planner:

! Assumes options followed to

completion

! Plans optimal SMDP solution

• SMDP planner with re-evaluation

! Plans as if options must be followed to

completion

! But actually takes them for only one

step

! Re-picks a new option on every step

• Static planner:

! Assumes weather will not change

! Plans optimal tour among clear sites

! Re-plans whenever weather changes

Low Fuel

High Fuel

Expected Reward/Mission

SMDP

Planner

Static

Re-planner

SMDP

planner

with

re-evaluation

of options on

each step

Temporal abstraction

finds better approximation

than static planner, with

little more computation

than SMDP planner

30

40

50

60

Illustration: Reconnaissance
Mission Planning (Results)

• SMDP planner:

! Assumes options followed to

completion

! Plans optimal SMDP solution

• SMDP planner with re-evaluation

! Plans as if options must be followed to

completion

! But actually takes them for only one

step

! Re-picks a new option on every step

• Static planner:

! Assumes weather will not change

! Plans optimal tour among clear sites

! Re-plans whenever weather changes

Low Fuel

High Fuel

Expected Reward/Mission

SMDP

Planner

Static

Re-planner

SMDP

planner

with

re-evaluation

of options on

each step

Temporal abstraction

finds better approximation

than static planner, with

little more computation

than SMDP planner

Example of Intra-Option Value Learning

 Intra-option methods learn correct values without ever

taking the options! SMDP methods are not applicable here

Random start, goal in right hallway, random actions

-4

-3

-2

-1

0

0 10001000 6000 2000 3000 4000 5000 6000

EpisodesEpisodes

Option
values

Average
value of

greedy policy

Learned value

Learned value

Upper

hallway

option

Left

hallway

option

True value

True value-4

-3

-2

1 10 100

Value of Optimal Policy

Example of Intra-Option Value Learning

 Intra-option methods learn correct values without ever

taking the options! SMDP methods are not applicable here

Random start, goal in right hallway, random actions

-4

-3

-2

-1

0

0 10001000 6000 2000 3000 4000 5000 6000

EpisodesEpisodes

Option
values

Average
value of

greedy policy

Learned value

Learned value

Upper

hallway

option

Left

hallway

option

True value

True value-4

-3

-2

1 10 100

Value of Optimal Policy

Intra-Option Model Learning

Intra-option methods work much faster than SMDP methods

Random start state, no goal, pick randomly among all options

Options executed

State
prediction

error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20,000 40,000 60,000 80,000 100,000

SMDP

SMDP

Intra

Intra

SMDP 1/t

Max
error

Avg.
error

SMDP 1/t

0

1

2

3

4

0 20,000 40,000 60,000 80,000 100,000

Options executed

SMDP

Intra
SMDP 1/t

SMDP

Intra SMDP 1/t

Reward
prediction

error

Max error

Avg. error

Intra-Option Model Learning

Intra-option methods work much faster than SMDP methods

Random start state, no goal, pick randomly among all options

Options executed

State
prediction

error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20,000 40,000 60,000 80,000 100,000

SMDP

SMDP

Intra

Intra

SMDP 1/t

Max
error

Avg.
error

SMDP 1/t

0

1

2

3

4

0 20,000 40,000 60,000 80,000 100,000

Options executed

SMDP

Intra
SMDP 1/t

SMDP

Intra SMDP 1/t

Reward
prediction

error

Max error

Avg. error

Tasks and Subgoals

It is natural to define options as solutions to subtasks
e.g. treat hallways as subgoals, learn shortest paths

!

We have defined subgoals as pairs : <G,g >

 G"S is the set of states treated as subgoals

 g :G#$ are their subgoal values (can be both good and bad)

Each subgoal has its own set of value functions, e.g.:

 Vg
o(s) = E{r1 + % r2 + ...+ % k&1

rk + g(sk) | s0 = s, o, sk 'G}

 Vg
*(s) = max

o
Vg
o(s)

Policies inside options can be learned from subgoals,

 in intra - option, off - policy manner.

Tasks and Subgoals

It is natural to define options as solutions to subtasks
e.g. treat hallways as subgoals, learn shortest paths

!

We have defined subgoals as pairs : <G,g >

 G"S is the set of states treated as subgoals

 g :G#$ are their subgoal values (can be both good and bad)

Each subgoal has its own set of value functions, e.g.:

 Vg
o(s) = E{r1 + % r2 + ...+ % k&1

rk + g(sk) | s0 = s, o, sk 'G}

 Vg
*(s) = max

o
Vg
o(s)

Policies inside options can be learned from subgoals,

 in intra - option, off - policy manner.

Between MDPs and SMDPs

• Termination Improvement

 Improving the value function by changing the termination

 conditions of options

• Intra-Option Learning

 Learning the values of options in parallel, without executing them

 to termination

 Learning the models of options in parallel, without executing

 them to termination

• Tasks and Subgoals

 Learning the policies inside the options

Between MDPs and SMDPs

• Termination Improvement

 Improving the value function by changing the termination

 conditions of options

• Intra-Option Learning

 Learning the values of options in parallel, without executing them

 to termination

 Learning the models of options in parallel, without executing

 them to termination

• Tasks and Subgoals

 Learning the policies inside the options

Summary: Benefits of Options

• Transfer

! Solutions to sub-tasks can be saved and reused

! Domain knowledge can be provided as options and subgoals

• Potentially much faster learning and planning

! By representing action at an appropriate temporal scale

• Models of options are a form of knowledge representation

! Expressive

! Clear

! Suitable for learning and planning

• Much more to learn than just one policy, one set of values

! A framework for “constructivism” – for finding models of the

world that are useful for rapid planning and learning

Summary: Benefits of Options

• Transfer

! Solutions to sub-tasks can be saved and reused

! Domain knowledge can be provided as options and subgoals

• Potentially much faster learning and planning

! By representing action at an appropriate temporal scale

• Models of options are a form of knowledge representation

! Expressive

! Clear

! Suitable for learning and planning

• Much more to learn than just one policy, one set of values

! A framework for “constructivism” – for finding models of the

world that are useful for rapid planning and learning

