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RL is Learning from Interaction
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• environment is stochastic and uncertain

RL is like Life!
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RL (another view)

Agent chooses actions so as to maximize expected 
cumulative reward over a time horizon

Observations can be vectors or other structures
Actions can be multi-dimensional
Rewards are scalar & can be arbitrarily uninformative

Agent has partial knowledge about its environment

Agent’s life Unit of experience



RL and Machine Learning

1. Supervised Learning (error correction)

• learning approaches to regression & classification
• learning from examples, learning from a teacher

2. Unsupervised Learning
• learning approaches to dimensionality reduction, density

estimation, recoding data based on some principle, etc.

3. Reinforcement Learning
• learning approaches to sequential decision making
• learning from a critic, learning from delayed reward



Some Key Ideas in RL

• Temporal Differences (or updating a guess on the
basis of another guess)

• Eligibility traces

• Off-policy learning

• Function approximation for RL

• Hierarchical RL (options)

• Going beyond MDPs/POMDPs towards AI



Model of Agent-Environment Interaction

Model?

Discrete time
Discrete observations

Discrete actions



Markov Decision Processes
(MDPs)

Markov Assumption:
Markov Assumption



MDP Preliminaries

• S: finite state space
A: finite action space
P: transition probabilities P(i|j,a)  [or Pa(ij)]
R: payoff function R(i) or R(i,a)
  : deterministic non-stationary policy S -> A
       :return for policy  when started in state i

Discounted framework

Also, average framework: Vπ = LimT → ∞ Eπ1/T {r0 + r1 + … + rT}



MDP Preliminaries...

• In MDPs there always exists a deterministic
stationary policy (that simultaneously maximizes
the value of every state)

;



Bellman Optimality Equations

Policy Evaluation (Prediction)

Markov assumption!



Bellman Optimality Equations

Optimal Control



Graphical View of MDPs
state

state

state

state

action

action

action

Temporal Credit Assignment Problem!!

Learning from Delayed Reward

Distinguishes RL from other forms of ML



Planning & Learning
in

MDPs



Planning in MDPs

• Given an exact model (i.e., reward function,
transition probabilities), and a fixed policy

For k = 0,1,2,...

Value Iteration (Policy Evaluation)

Stopping criterion: 

Arbitrary initialization:  V0



Planning in MDPs

Given a exact model (i.e., reward function, transition
probabilities), and a fixed policy
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Stopping criterion: 

Arbitrary initialization:  Q0



Planning in MDPs

Given a exact model (i.e., reward function, transition
probabilities)

For k = 0,1,2,...

Value Iteration (Optimal Control)

Stopping criterion: 



Convergence of  Value Iteration

*

1

2

3

4

Contractions!



Proof of the DP contraction



Learning in MDPs
• Have access to the “real

system” but no model

state

state

state

state

action

action

action

Generate experience

Two classes of approaches:
  1. Indirect methods

2. Direct methods       

This is what life looks like!



Indirect Methods for Learning in MDPs
• Use experience data to estimate model

• Compute optimal policy w.r.to estimated model
(Certainly equivalent policy)

• Exploration-Exploitation Dilemma

Parametric models

Model converges asymptotically provided all state-action pairs
are visited infinitely often in the limit; hence certainty equivalent
policy converges asymptotically to the optimal policy



Q-Learning

s0a0r0 s1a1r1 s2a2r2 s3a3r3… skakrk…

A unit of experience  < sk ak rk sk+1 >

Update:

    Qnew(sk,ak) = (1-!) Qold(sk,ak) +

                             ![rk + " maxb Qold(sk+1,b)]

Watkins, 1988

step-size

Big table of Q-values?

Direct Method:

Only updates state-action pairs
that are visited...
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So far...
• Q-Learning is the first provably convergent direct

adaptive optimal control algorithm

• Great impact on the field of modern
Reinforcement Learning

• smaller representation than models

• automatically focuses attention to where it is
needed, i.e., no sweeps through state space

• though does not solve the exploration versus
exploitation dilemma

• epsilon-greedy, optimistic initialization, etc,...



Monte Carlo?

Start at state s and execute the policy for a long
trajectory and compute the empirical discounted return

Do this several times and average the returns across
trajectories

Suppose you want to find            for some fixed state s

How many trajectories?

Unbiased estimate whose variance improves with n



Sparse Sampling

Use generative model
to generate depth ‘n’ tree 
with ‘m’ samples for each action
in each state generated

Near-optimal action at root state in
 time independent of the size of state space

(but, exponential in horizon!)
Kearns, Mansour & Ng



Summary
• Space of Algorithms:

• (does not need a model) linear in horizon +
polynomial in states

• (needs generative model) Independent of
states + exponential in horizon

• (needs generative model) time complexity
depends on the complexity of policy class



Eligibility Traces
(another key idea in RL)



Eligibility Traces

• The policy evaluation problem: given a (in
general stochastic) policy !, estimate

        V!(i) = E!{r0+ "r1 + "2r2 + "3r3+… | s0=i}

   from multiple experience trajectories
generated by following policy ! repeatedly
from state i

   A single trajectory:

              r0       r1       r2           r3          ….         rk            rk+1   ….
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff

Intuition: start with large ! and then decrease over time" 

error
t
# a!

1$ b!
t

1$ b!
+ b!

t

t%&,  error asymptotes at 
a!

1- b!
( an increasing function of !)

Rate of convergence is b!
t (exponential)

b! is a decreasing function of !

Kearns & Singh, 2000

Constant step-size
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Near-Optimal
Reinforcement Learning in

Polynomial Time
(solving the exploration versus exploitation dilemma)



Function Approximation
and

Reinforcement Learning



General Idea
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• Radial-Basis-Function Network
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• Nearest Neighbor, Memory Based

• Decision Tree

gradient-
descent
methods

targets or errors

    Q(s,a)
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Neural Networks as FAs

estimated value

w ! w + " r
t +1 + #Q(st+1,at +1 ) $Q(st ,at )[ ] %w f (st ,at ,w)

Q(s,a) = f (s,a,w)

e.g., gradient-descent Sarsa:
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weight vector

standard
backprop 
gradient
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Linear in the Parameters FAs
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Sparse Coarse Coding

fixed expansive

Re-representation

Linear
last 
layer

Coarse:   Large receptive fields

Sparse:   Few features present at one time

features

.

.

.

.

.

.

.

.

.

.

.





Shaping Generalization in Coarse
Coding

Shaping Generalization in Coarse
Coding







FAs & RL

• Linear FA  (divergence can happen)
Nonlinear Neural Networks (theory is not well developed)
Non-parametric, e.g., nearest-neighbor (provably not
divergent; bounds on error)
Everyone uses their favorite FA… little theoretical
guidance yet!

• Does FA really beat the curse of dimensionality?

• Probably; with FA, computation seems to scale with the
complexity of the solution (crinkliness of the value function) and
how hard it is to find it

• Empirically it works

• though many folks have a hard time making it so

• no off-the-shelf FA+RL yet



Off-Policy Learning

• Learning about a way of behaving
while behaving in some other way



Importance Sampling
• Behave according to policy µ

• Evaluate policy π

• Episode (e): s0 a0 r1 s1 r2 … sT-1 aT-1 rT sT

• Pr(e|π) = ΠT-1
k = 0 π(ak | sk) Pr(sk+1|sk,ak)

• Importance Sampling Ratio:

High variance



Off-Policy with Linear
Function Approximation

Precup, Sutton & Dasgupta



After MDPs...

• Great success with MDPs

• What next?

• Rethinking Actions, States, Rewards

• Options instead of actions

• POMDPs



Rethinking Action
(Hierarchical RL)

Options
(Precup, Sutton, Singh)

MAXQ by Dietterich
HAMs by Parr & Russell



Abstraction in Learning and Planning

• A long-standing, key problem in AI !

• How can we give abstract knowledge a clear semantics?

e.g. “I could go to the library”

• How can different levels of abstraction be related?

! spatial: states

! temporal: time scales

• How can we handle stochastic, closed-loop, temporally

extended courses of action?

• Use RL/MDPs to provide a theoretical foundation
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Options

Example: docking

 
 ! : hand-crafted controller

"  : terminate when docked or charger not visible

Options can take variable number of steps

A generalization of actions to include courses of action

Option execution is assumed to be call-and-return

  

# 

An option is a triple o =< I,! ," >

• I$S is the set of states in which o may be started

• ! :S%A& [0,1] is the policy followed during o

• " :S& [0,1] is the probability of terminating in each state

 

I : all states in which charger is in sight
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Rooms Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location, 

quickly plan shortest route  

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable 
primitive actions

Fail 33% 
of the time 

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM
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Options define a  Semi-Markov Decison 

Process (SMDP)

Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP

Options

over MDP

State

Time
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MDP + Options = SMDP

Thus all Bellman equations and DP results extend for

value functions over options and models of options

(cf. SMDP theory).

Theorem:

For any MDP, 

and any set of options,
the decision process that chooses among the options,
executing each to termination,
is an SMDP.

MDP + Options = SMDP

Thus all Bellman equations and DP results extend for
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is an SMDP.



What does the SMDP connection give us? 

  

! 

• Policies over options :  µ :S"O# [0,1]

• Value functions over options :  V µ (s),Qµ (s,o),VO

*(s),QO

* (s,o)

• Learning methods :  Bradtke &  Duff (1995), Parr (1998)

• Models of options

• Planning methods :  e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of 

  action at variable time scales, yet at the same level

A theoretical fondation for what we really need!

But the most interesting issues are beyond SMDPs...
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Value Functions for Options 

Define value functions for options, similar to the MDP case

    

V µ
(s) = E {rt+1 + ! rt+2 + ... | E(µ,s,t)}

Q µ
(s,o) = E {rt+1 + ! rt+2 + ... | E(oµ,s,t)}

Now consider policies µ "#(O) restricted to choose only 

from options in O :

VO

*
(s) = max

µ"# (O)
V µ
(s)

QO

*
(s,o) = max

µ"#(O)
Qµ
(s,o)
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Models of Options

Knowing how an option is executed is not enough for reasoning about
it, or planning with it. We need information about its consequences 

! 

The model of the consequences of starting option o in state s has :

• a reward part

      rs
o

= E{r1 + "r2 + ...+ " k#1
rk | s0 = s,  o taken in s0, lasts k steps}

• a next - state part

      pss'
o

= E{" k$sks' | s0 = s,  o taken in s0,  lasts k steps}

                      %
                       1 if s'= sk is the termination state, 0 otherwise

This form follows from SMDP theory. Such models can be used 
interchangeably with models of primitive actions in Bellman equations.
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Example: Synchronous Value Iteration

Generalized to Options

  

! 

Initialize :  V0(s)" 0                                       #s$ S

Iterate :     Vk+1(s)" max
o$O

[rs
o + pss'

o

s'$S

% Vk (s')]       #s$ S

The algorithm converges to the optimal value function,given the options :

                 lim
k&'

Vk =VO

* 

Once VO

* is computed, µO

*  is readily determined.

If O = A,  the  algorithm  reduces  to  conventional  value  iteration

If A ( O,  then VO

* =V *
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Rooms Example

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions
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with room-to-room
options

V(goal )=1

V(goal )=1

Rooms Example

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal )=1

V(goal )=1



Example with Goal!Subgoal

both primitive actions and options

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5
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What does the SMDP connection give us? 

      

• Policies over options :  µ :S !O a [0,1]

• Value functions over options :  Vµ
(s),Qµ

(s,o),VO

*
(s),QO

*
(s,o)

• Learning methods :  Bradtke &  Duff (1995), Parr (1998)

• Models of options

• Planning methods :  e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of 

  action at variable time scales, yet at the same level

A theoretical foundation for what we really need!

But the most interesting issues are beyond SMDPs...
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Advantages of Dual MDP/SMDP View 

At the SMDP level

Compute value functions and policies over options
with the benefit of increased speed / flexibility

At the MDP level

Learn how to execute an option for achieving a

given goal

Between the MDP and SMDP level

Improve over existing options (e.g. by terminating early)

Learn about the effects of several options in parallel,

without executing them to termination
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Between MDPs and SMDPs

• Termination Improvement

  Improving the value function by changing the termination 

  conditions of options 

• Intra-Option Learning

   Learning the values of options in parallel, without executing them 

   to termination

   Learning the models of options in parallel, without executing 

   them to termination

• Tasks and Subgoals

  Learning the policies inside the options
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Termination Improvement

Idea: We can do better by sometimes interrupting ongoing options
- forcing them to terminate before !   says to  

  

" 

Theorem :  For any policy over options µ :S#O$ [0,1],
                  suppose we interrupt its options one or more times, when

                           Q
µ
(s,o) <Qµ

(s,µ(s)),    where s is the state at that time
                                                                          o is the ongoing option
                  to obtain µ':S#O '$ [0,1],

                  Then µ' > µ  (it attains more or equal reward everywhere)

Application :  Suppose we have determined QO

*  and thus µ = µO

* .

                     Then µ'  is guaranteed better than µO

*

                     and is available with no additional computation. 
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range (input set) of each
run-to-landmark controller

landmarks

S

G

Landmarks Task

Task:  navigate from S to G as 
fast as possible

4 primitive actions, for taking 
tiny steps up, down, left, right

7 controllers for going straight
to each one of the landmarks,
from within a circular region
where the landmark is visible
 

In this task, planning at the level of primitive actions is 
computationally intractable, we need the controllers
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Illustration: Reconnaissance
Mission Planning (Problem)

• Mission: Fly over (observe) most
valuable sites and return to base

• Stochastic weather affects
observability (cloudy or clear) of sites

• Limited fuel

• Intractable with classical optimal
control methods

• Temporal scales:

! Actions: which direction to fly now

! Options: which site to head for

• Options compress space and time

! Reduce steps from ~600 to ~6

! Reduce states from ~1011 to ~106

  

Q
O

*
(s, o) = rs

o
+ ps ! s 

o
V

O

*
( ! s )

! s 

"
any state (106) sites only (6)
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100 decision steps

options

(mean time between

     weather changes)
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Illustration: Reconnaissance
Mission Planning (Results)

• SMDP planner:

! Assumes options followed to

completion

! Plans optimal SMDP solution

• SMDP planner with re-evaluation

! Plans as if options must be followed to

completion

! But actually takes them for only one

step

! Re-picks a new option on every step

• Static planner:

! Assumes weather will not change

! Plans optimal tour among clear sites

! Re-plans whenever weather changes

Low Fuel

High Fuel

Expected Reward/Mission

SMDP

Planner

Static

Re-planner

SMDP

planner

with

re-evaluation

of options on

each step

Temporal abstraction

finds better approximation

than static planner, with

little more computation

than SMDP planner
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Example of Intra-Option Value Learning

 Intra-option methods learn correct values without ever 

taking the options! SMDP methods are not applicable here

Random start, goal in right hallway, random actions
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Intra-Option Model Learning

Intra-option methods work much faster than SMDP methods

Random start state, no goal, pick randomly among all options

Options executed
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Tasks and Subgoals

It is natural to define options as solutions to subtasks
e.g. treat hallways as subgoals, learn shortest paths

  

! 

We have defined subgoals as pairs :  <G,g >  

     G"S is the set of states treated as subgoals

     g :G#$ are their subgoal values (can be both good and bad)

Each subgoal has its own set of value functions, e.g.:

      Vg
o(s) = E{r1 + % r2 + ...+ % k&1

rk + g(sk ) | s0 = s, o, sk 'G}

       Vg
*(s) = max

o
Vg
o(s)

Policies inside options can be learned from subgoals, 

      in intra - option, off - policy manner.
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Between MDPs and SMDPs

• Termination Improvement

  Improving the value function by changing the termination 

  conditions of options 
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   Learning the values of options in parallel, without executing them 

   to termination

   Learning the models of options in parallel, without executing 
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Summary: Benefits of Options

• Transfer

! Solutions to sub-tasks can be saved and reused

! Domain knowledge can be provided as options and subgoals

• Potentially much faster learning and planning

! By representing action at an appropriate temporal scale

• Models of options are a form of knowledge representation

! Expressive

! Clear

! Suitable for learning and planning

• Much more to learn than just one policy, one set of values

! A framework for “constructivism” – for finding models of the

world that are useful for rapid planning and learning
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