
1 / 23

PAC Model-Free

Reinforcement Learning

Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, Michael L. Littman

RL3, Rutgers University
CSE, Univ. of California, San Diego

TTI Chicago → Yahoo! Research

Presenter: Lihong Li

With thanks to:
Sham Kakade, Yishay Mansour, Ali Nouri, Satinder Singh, and Tom Walsh.

2 / 23

WARNING: This is a theoretical work about complexity results.

“Someone told me that each equation I included in the book
would halve the sales. I therefore resolved not to have any
equations at all.”

— Stephen Hawking (A Brief History of Time, 1988)

BUT we are computer scientists.

SO I’m going to use three equations.

Conclusions

3 / 23

Consider reinforcement learning

� of a single agent
� in a fully observable environment
� based on a single thread of experience (no resets or generative models)

Theoretical contributions: Delayed Q-learning which

� is model-free
� improves on previous complexity results

– space complexity
– per-step computational complexity
– sample complexity (of exploration)

� answers the open question of efficient model-free RL affirmatively

Talk Outline

4 / 23

� Introduction

� Delayed Q-learning

� Proof Sketch

� Future Directions

Introduction

. Introduction

Delayed Q-learning

Main Results

Conclusions

5 / 23

Notation

6 / 23

Consider finite Markov decision processes (MDPs) with

� state space S,
� action space A,
� discount factor γ ∈ [0, 1),
� transition function T (s′|sa), and
� bounded rewards R(s, a) ∈ [0, 1].

A deterministic Markov policy π : S 7→ A.
Given a trajectory: s1, a1, r1, s2, a2, r2, · · · , st, at, rt, · · · .
Value functions:

V π(s) := E{r1 + γr2 + γ2r3 + · · · | s1 = s, π}

Qπ(s, a) := E{r1 + γr2 + γ2r3 + · · · | s1 = s, a1 = a, π}

V ∗(s) := V π∗

(s) = max
π

V π(s)

Q∗(s, a) := Qπ∗

(s, a) = max
π

Qπ(s, a)

Reinforcement Learning

7 / 23

Objective

� to learn the optimal policy or value function
� based on sampling of (or interaction with) the environment
� without knowing T and R.

Challenges:

� exploration vs. exploitation
� temporal credit assignment
� scaling up
� generalization

Performance Criteria

8 / 23

We often trade one factor for another:

� per-step computational complexity

� space complexity

– model-free: o(S2A)
– model-based: Ω(S2A)

� sample complexity

– (Kakade, 2003): #timesteps that the algorithm does not behave
ε-optimally.

– An algorithm is PAC-MDP if w.h.p. its sample complexity is bounded by a
polynomial in relevant quantities.

Summary

9 / 23

PAC-MDP non-PAC-MDP/unknown

model-
free

Q-learning, Sarsa

model-
based

E3, Rmax, MBIE Dyna-Q, prioritized sweeping,
certainty equivalence, adaptive
RTDP

computation space (best) sample

E3 Ω(S2A) Θ(S2A) polynomial

Rmax Ω(S2A) Θ(S2A) Õ
(

S2A
ε3(1−γ)6

)

MBIE Ω(S2A) Θ(S2A) Õ
(

S2A
ε3(1−γ)6

)

Q-learning O(log(A)) Θ(SA) can be EXP
Sarsa O(log(A)) Θ(SA) can be EXP

Summary

10 / 23

PAC-MDP non-PAC-MDP/unknown

model-
free

Delayed Q-learning Q-learning, Sarsa

model-
based

E3, Rmax, MBIE Dyna-Q, prioritized sweeping,
certainty equivalence, adaptive
RTDP

computation space (best) sample

E3 Ω(S2A) Θ(S2A) polynomial

Rmax Ω(S2A) Θ(S2A) Õ
(

S2A
ε3(1−γ)6

)

MBIE Ω(S2A) Θ(S2A) Õ
(

S2A
ε3(1−γ)6

)

Q-learning O(log(A)) Θ(SA) can be EXP
Sarsa O(log(A)) Θ(SA) can be EXP

Delayed Q-learning O(log(A)) Θ(SA) Õ
(

SA

ε4(1−γ)8

)

Delayed Q-learning

Introduction

. Delayed Q-learning

Main Results

Conclusions

11 / 23

Algorithm Overview

12 / 23

During execution

� Maintain Q-values for all (s, a), denoted by Qt(s, a) at time t;
� Define Vt(s) = maxa Qt(s, a).

Delayed Q-learning:

1. Start state: s1.
2. Optimistic initialization: Q1(s, a)← Qmax (= 1

1−γ
).

3. At time t = 1, 2, 3, · · · :

(a) selects greedy action: at ← arg maxa Qt(st, a);
(b) observes immediate reward rt and next state st+1;
(c) one-step lookahead backup value: rt + γ maxa Qt(st+1, a);
(d) updates Qt(st,at):

“Raw” Update Rule

13 / 23

Suppose (s, a) is visited m times since last update:

time k1 k2 ki t=km

1. Last visit when
previous m samples
were collected for

an attempted update

2. Start gathering
next m samples
for (s,a) from k1

4. Perform an update
when m samples are

collected at km

3. Make no
updates in

intermediate visits

(s,a)= (,)

The respective backup values:
rk1

+ γVk1
(sk1+1), rk2

+ γVk2
(sk2+1), · · · , rkm

+ γVkm
(skm+1)

Q-learning at time ki:

Qki+1(s, a) ← (1− α)Qki
(s, a) + α (rki

+ γVki
(ski+1)) .

The delayed update rule at time km:

Qt+1(s, a) ←
1

m

m
∑

i=1

(

rki
+ γVki

(ski+1)
)

.

“Refined” Update Rule

14 / 23

The “raw” update rule: Qt+1(s, a)← 1
m

∑m
i=1

(

rki
+ γVki

(ski+1)
)

.

To prove PAC-MDP-ness, make several changes:

� Add a bonus ε1 = Θ(ε
1−γ

):

Qt+1(s, a) ←
1

m

m
∑

i=1

(

rki
+ γVki

(ski+1)
)

+ε1.

� Update of Q(s, a) succeeds only when

– it results in a minimum decrease of ε1, and
– some Q(·, ·) is changed since last update of Q(s, a).

� If update unsuccessful

– keep current Q-values,
– discard these m samples, and
– start collecting another m samples.

Comparison to Q-learning

15 / 23

Similarities:

� model-free, learns Q-values, algorithmic structure, online, etc.

Differences:

� optimistic initialization

� updates

– delayed until m samples
– no learning rates
– may fail
– finite #updates
– Q-values monotonically decrease

� always chooses greedy actions

� never has exponential sample complexity

Main Results

Introduction

Delayed Q-learning

. Main Results

Conclusions

16 / 23

Main Results

17 / 23

Set

m = Θ

log
(

SA
εδ(1−γ)

)

ε2(1− γ)4

 .

Then Delayed Q-learning enjoys provable efficiency:

� Per-step computational complexity: O(log(A))

� Space complexity: O(SA)

� Sample complexity: Õ(SA)

Similar results for finite-horizon cases.

Known State-Actions

18 / 23

“Known State-Actions”:

Kt =

{

(s, a)
∣

∣

∣
Qt(s, a)−

(

R(s, a) + γ
∑

s′

T (s′|sa)Vt(s
′)

)

≤ 3ε1

}

Escape probability:

p = Pr

{

escape Kt in H = O

(

1

1− γ
log

(

1

ε(1− γ)

))

steps

}

.

),(as

tK AS

Proof Sketch

19 / 23

1. Bound # updates of Q-values by a polynomial P

� because of the refined update rule
� allows Hoeffding’s bound be used in our proof below

2. Case 1 (“p small enough”): near-optimal

� p small =⇒ Bellman residuals small w.h.p.
� =⇒ actual value functions are close to V ∗

� =⇒ near-optimal policies

3. Case 2 (“p not small enough”): except polynomial #steps

� (s, a) /∈ Kk1
and is visited m times

=⇒ Q(s, a) is updated at time km w.h.p.
� but #updates is bounded by P
� =⇒ bound #occurrences of this “undesired” case

Conclusion: Delayed Q-learning is PAC-MDP.

Related Work on Sample Complexity

20 / 23

� Model-based

– (Fiechter, COLT’94): assumes a reset
– E3 (Kearns-Singh ICML’98): explicitly explores or exploits
– Rmax (Brafman-Tennenholtz IJCAI’01) / MBIE (Strehl-Littman

ICML’05): optimism in the face of uncertainty
– RTDP-RMAX and RTDP-IE (Strehl-Li-Littman UAI’06): O(S log A)

computational complexity

� Model-free

– Phased Q-learning (Kearns-Singh NIPS’99): averaging updates to
simulate Bellman backups

– (Even-dar-Mansour JMLR’03): assumes an efficient exploration policy

Conclusions

Introduction

Delayed Q-learning

Main Results

. Conclusions

21 / 23

Future Directions

22 / 23

� Closing the gap between upper and lower bounds of sample complexity.

– best known lower bound (Kakade 2003): Ω̃(SA
ε(1−γ)2

)

� Extending results to possibly infinite MDPs

– generalization

� Employing structures

– factored representations (e.g., factored E3)
– state abstraction

Take-Home Messages

23 / 23

� Solved the open question of efficient model-free RL
� Delayed Q-learning: the first algorithm that is

– model free
– proven to be efficient, and
– without resets or generative models

� Sample complexity (Õ(SA)) is less than MDP description complexity
(O(S2A))

– only O(SA) quantities are to be estimated;
– MDP representations are not compact in the sense of efficiently learning

near-optimal behavior.

� Sample complexity does not increase significantly compared to deterministic
MDPs (O(SA)).

	
	
	Conclusions
	Talk Outline
	Introduction
	Notation
	Reinforcement Learning
	Performance Criteria
	Summary
	Summary

	Delayed Q-learning
	Algorithm Overview
	``Raw'' Update Rule
	``Refined'' Update Rule
	Comparison to Q-learning

	Main Results
	Main Results
	Known State-Actions
	Proof Sketch
	Related Work on Sample Complexity

	Conclusions
	Future Directions
	Take-Home Messages

