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Reinforcement Learning as Classification

Overview

Classification Policy Iteration
An algorithm for learning good policies in sequential decision problems

Main Idea

• Focus on policy learning as opposed to value function learning

• View policy learning as supervised learning (classification)

Motivation

• Value function learning and approximation can be problematic

• Gradient-based algorithms can be inefficient

Benefits

• Direct link between reinforcement learning and classification

• Soundness and efficiency of approximate policy iteration
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Reinforcement Learning as Classification

Background
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Reinforcement Learning as Classification

Markov Decision Processes (MDPs)

An MDP is defined as a 6-tuple (S,A,P,R, γ,D):

• S : State space of the process

• A : Action space of the decision maker

• P : Transition model, P(s, a, s′) = P (s′|s, a)

• R : Reward function, R(s, a)

• γ : Discount factor, γ ∈ (0, 1)

• D : Initial state probability distribution

Markov property : next state and reward independent of history
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Reinforcement Learning as Classification

Markov Decision Processes (cont’d)

Episodes

s0
a0−−−−→
r0

s1
a1−−−−→
r1

s2
a2−−−−→
r2

s3 ... sh−1
ah−1

−−−−→
rh−1

sh

Expected Total Discounted Reward

E
(
r0 + γr1 + γ2r2 + γ3r3 + · · · + γhrh

)

Deterministic Policy

π : S 7→ A

Goal: Optimal Policy

π∗ = arg max
π

Es∼D ; at∼π ; st∼P

(
h∑

t=0

γtrt

∣∣∣ s0 = s

)

September 2003 Machine Learning Reductions Workshop Page 5



Reinforcement Learning as Classification

Policy Iteration
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Reinforcement Learning as Classification

Policy Iteration

September 2003 Machine Learning Reductions Workshop Page 7



Reinforcement Learning as Classification

Approximate Policy Iteration
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Reinforcement Learning as Classification

Approximate Policy Iteration Errors
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Reinforcement Learning as Classification

Approximate Policy Iteration Bound

Theorem If there exist positive scalars ε and δ such that

∀ k = 0, 1, 2, ..., ‖Q̂π̂k −Qπ̂k‖∞ ≤ ε ,

and

∀ k = 0, 1, 2, ..., ‖Tπ̂k+1
Q̂π̂k − T∗Q̂

π̂k‖∞ ≤ δ ,

then

lim sup
k→∞

‖Q̂π̂k − Q∗‖∞ ≤
δ + 2γε

(1 − γ)2
.

Based on [Bertsekas and Tsitsiklis, 1996]
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Reinforcement Learning as Classification

The Algorithm
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Reinforcement Learning as Classification

Policy as Classifier

• Deterministic policy: maps states to actions

• Multiclass classifier: maps inputs to classes

A deterministic policy can be represented/implemented

as a multiclass classifier!
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Reinforcement Learning as Classification

Policy Learning as Supervised Learning

• Input: Examples of the target policy at a subset of states

• Learner: SVM, Neural net, Decision tree, ILP, ...

• Output: A complete policy over the entire state space

Motivation / Benefits

• Policies may be simple and easy to represent

• Value functions may be complex and hard to approximate

• Potential for discovering structure in the policy
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Reinforcement Learning as Classification

The Key Idea - I
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Reinforcement Learning as Classification

The Key Idea - II

Support Vector Machines, Neural Networks
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Reinforcement Learning as Classification

Rollout: Monte Carlo Value Function Estimation

True State-Action Value Function Q

s
a

−−−−→
r0

s1
π(s1)

−−−−→
r1

s2
π(s2)

−−−−→
r2

s3
π(s3)

−−−−→
r3

s4
π(s4)

−−−−→
r4

s5 ...

Qπ(s, a) = Eat∼π ; st∼P

(
∞∑

t=0

γtrt

∣∣∣ s0 = s, a0 = a

)

Estimated State-Action Value Function Q̃

Simulate K episodes of length T , record rk,t

Q̃π(s, a) =
1

K

K∑

k=1

(
T∑

t=0

γtrk,t

∣∣∣ s0 = s, a0 = a

)
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Reinforcement Learning as Classification

Classifier Training Data for State s

Pairwise Two-Sample t-Test

Q̃π(s, a1) <̃ Q̃π(s, a2) with 95% confidence

Training Examples

1 2 3 4 5
0

1

2

3

4

Q
 V

al
ue

s

a* 

• a∗ = arg maxa∈A Q̃
π(s, a)

• Positive example (s, a∗)+: Q̃π(s, a) <̃ Q̃π(s, a∗), ∀ a 6= a∗

• Negative example (s, a)−: Q̃π(s, a) <̃ Q̃π(s, a∗)
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Reinforcement Learning as Classification

Distribution of Training (Rollout) States

Uniform distribution

• Simple

• Non-scalable

γ-Discounted future state distribution of a policy π

ρπ,D = (1 − γ)
∞∑

t=0

γtD(ΠπP)t ,

• Emphasis on frequently visited states and on their contribution

s0 ∼ D
π(s0)

−−−−→
(P=γ)

s1
π(s1)

−−−−→
(P=γ)

s2
π(s2)

−−−−→
(P=γ)

s3 ... st−1
π(st−1)
−−−−−→
(P=γ)

st
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Reinforcement Learning as Classification

Matching Training and Testing Distributions

Classification assumption

• Training distribution = Testing Distribution

Natural testing distribution for classifier representing π(k+1)

• γ-discounted future state distribution of the target policy π(k+1)

s0 ∼ D
π(k+1)(s0)
−−−−−−−→

(P=γ)
s1

π(k+1)(s1)
−−−−−−−→

(P=γ)
s2... st−1

π(k+1)(st−1)
−−−−−−−−→

(P=γ)
st

Natural training distribution for learning π(k+1)

• Can we draw states from this distribution? YES! [Fern et al., 03]

• Use the current policy π̂(k), the generative model, and rollouts

to determine and execute the target policy π(k+1)

• Training and testing distributions match!
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Reinforcement Learning as Classification

Termination Criteria

Policy Performance

• Monte-Carlo estimation of ηπ

ηπ = Es∼D ; at∼π ; st∼P

(
h∑

t=0

γtrt

∣∣∣ s0 = s

)

• Terminate if ηπ(k−1) ≥ ηπ(k)

Policy Representation

• Similarity between classifiers

• Terminate if the classifiers for π(k−1) and π(k) are similar
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Reinforcement Learning as Classification

Summarizing the Algorithm

Support Vector Machines, Neural Networks
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Reinforcement Learning as Classification

The Algorithm

CPI (M, Dρ, γ, π0, K, T ) // Learns a good policy from a generative model

// M : Generative model

// Dρ : Source of rollout states

// γ : Discount factor

// π0 : Initial policy (default: uniformly random)

π′ = π0

repeat

π = π′; TS = ∅

for each s ∈ Dρ

Q̃π(s, a)← Rollout(M, s, a, γ, π, K, T ), ∀ a ∈ A

a
∗ = arg max

a∈A
Q̃

π(s, a)

if ∀ a ∈ A, a 6= a∗ : Q̃π(s, a) <̃ Q̃π(s, a∗)

TS ← TS ∪ {(s, a∗)+}

for each a ∈ A : Q̃π(s, a) <̃ Q̃π(s, a∗)

TS ← TS ∪ {(s, a)−}

π′ = Classifier-Training(TS)

until (π ≈ π′)

return π

Complexity: O
(
|Dρ|

(
TM(KT ) + |A|2

)
+ TTrain(|Dρ|)

)
time/iteration, O (|Dρ|) space
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Reinforcement Learning as Classification

Properties of the Algorithm

Advantages

• Is stable; does not diverge

• Eliminates value function approximation

• Simplifies feature engineering with modern classifiers

• Is simple and easy to implement

Limitations

• May yield poor policies with badly distributed rollout states

• Is practical only for small action spaces

• Needs a generative model
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Reinforcement Learning as Classification

Experiments
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Reinforcement Learning as Classification

Inverted Pendulum Balancing

ϑ

Balance the pendulum at the upright position!

• S = {(angle θ, angular velocity θ̇)}

• A = {−50 N, 0 N, +50 N}

• Model: non-linear dynamical system [Wang et al., 1996]

• Noise: Input u = a+ 10n, n uniform in [−1,+1]

• Reward: −1 if |θ| >
π

2
, 0 otherwise

• γ = 0.95
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Reinforcement Learning as Classification

Pendulum: Policies Learned

blue: left force, green: no force, red: right force
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SVM SVM Neural Network

polynomial gaussian 5 hidden

(deg 2) kernel kernel units

200 rollout states, uniform distribution

Learned in one iteration starting from the random policy
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Reinforcement Learning as Classification

Pendulum: Data for the LeftForce Action
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Positive (+), negative (x) examples and support vectors (o)
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Reinforcement Learning as Classification

Bicycle Balancing and Riding
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Balance and ride a bicycle at a target location 1 Km away!

• S = {(θ, θ̇, ω, ω̇, ω̈, ψ)}

θ: angle of the handlebar, ω: vertical angle, ψ: angle to the goal

• A = {(τ, υ)}

τ ∈ {−2, 0,+2}: torque, υ ∈ {−0.02, 0,+0.02}: displacement

• Model: non-linear dynamical system [Randløv and Alstrøm, 1998]

• Noise: input (τ, υ + n), n ∈ [−0.02,+0.02]

• Reward:

– 1 for balancing + 1% of the net change in distance to goal

– 0 for crashing

• γ = 0.95 − 0.99
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Reinforcement Learning as Classification

Bicycle: Policies from Sample Runs

SVM (polynomial kernel of degree 3, 4000 rollout states)
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NN (30 hidden units, 8000 rollout states)
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Reinforcement Learning as Classification

Related Work

The talks in this session of the workshop!

[Fern, Yoon, and Givan, 2003]

• Decision lists, cost-sensitive classification, policy language bias

[Bagnell, Kakade, Ng, and Schneider, 2003]

• Binary action MDPs, linear decision boundaries for classification

[Langford and Zadrozny, 2003]

• T -step non-stationary policies, one classifier per step, (forked) traces

September 2003 Machine Learning Reductions Workshop Page 30



Reinforcement Learning as Classification

Future Work and Conclusion

Future Work

• Sparse sampling techniques for value function estimation

• Alternative distributions for training states

• Multi-agent learning: Zero-Sum Markov games, Team MDPs

• Probabilistic classification methods for stochastic policies

Conclusion

• A reinforcement learning algorithm in policy space

• No value function approximation, No policy gradient

• Soundness and efficiency of approximate policy iteration

• Direct link between reinforcement learning and classification
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