Reducing Planning to Classification

Alan Fern

Joint work w/ SungWook Yoon and Bob Givan

Electrical and Computer Engineering

Purdue University

Available actions (possibly stochastic):

Pickup(x) PutDown(x,y)

Alan Fern

Relational MDP / Planning Domain

State-of-the-art on AI planning benchmarks.

appendict of a state o

Alan Fern

Learning to Act

[Khardon, MLJ'99] gives PAC semantics linking classification and planning performance.

Consider class of policies *C*. Observe $O(\log |C|)$ trajectories of target policy in *C*.

If policy π in *C* is consistent with trajectories then quality of π is "probably close" to quality of target.

Suggests a type of reduction:

- 1) Somehow observe trajectories of a good policy.
- 2) Learn a classifier to (approximately) imitate the policy.

How can we observe a good policy?

Alan Fern

Reduction 1: Learning to Solve Small Problems

[Khardon, AIJ 1999], [Martin&Geffner, KR 2000], [Yoon, Fern & Givan, 2002]

Generalizing to Large Problems

[Khardon, AIJ 1999], [Martin&Geffner, KR 2000], [Yoon, Fern & Givan, 2002]

Why expect policies to generalize to large problems?

- Select good policy language bias.
 - <u>Restrict expressiveness</u> to avoid overfitting.
 - But expressive enough to represent good policies.

Experimental Domains

SLW(t,p,c)

(Stochastic) Blocks World (Stochastic) Painted Blocks World

(Stochastic) Logistics World

Port and 7

Alan Fern

Unsolved Problems

- Select policies without immediate access to small problems
 - Can we learn directly in a large domain?
- Improving buggy policies
 - All previous techniques produce policies with occasional fatal flaws.
- Our approach: use standard MDP technique of (approximate) policy iteration

Flowchart View of Policy Iteration

 $V_{\pi}(s) =$ "value" of following π starting at s

Approximate Policy Iteration

Usual Approach: reduce to value function approximation

- Value functions can be harder to represent than policies.
- Learning a policy directly may be more effective.

Electrical and Computer Engineering Purdue University

Alan Fern

Approximate Policy Iteration

Our Approach: reduce to classifier learning

Refinement: Reduce to cost-sensitive classification. Costs based on Q-values.

Den 12

Alan Fern

 For our relational planning domains we use the FF-plan plangraph heuristic

> Electrical and Computer Engineering Purdue University

Alan Fern

Initial Policy Choice

- Policy iteration requires an initial base policy
- Options include:
 - random policy
 - greedy policy with respect to a planning heuristic
 - policy learned from small problems

API Results

Starting with flawed policies learned from small problems

Electrical and Computer Engineering Purdue University

Alan Fern

Starting with a policy greedy with respect to a domain independent heuristic

Ongoing and Future Work

- Explore new policy languages
 - E.g. relative value functions [Dietterich & Wang, NIPS'02]
- Approximation guarantees.
- Generalize to domains that "require search".
- Incorporating deductive reasoning.
- Generalize to games and partial observability.
 - E.g. the game of Hearts.

Questions?

Alan Fern