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Avallable actions (possibly stochastic):

Pickup(x)
PutDown(x,y)
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State-of-the-art on Al planning benchmarks.

Alan Fern

Electrical and Computer Engineering

Favorite
Learner

Purdue University




Learning to Act

[Khardon, MLJ'99] gives PAC semantics linking classification
and planning performance.

Consider class of policies C.
Observe O(log |C|) trajectories of target policy in C.

If policy p in C is consistent with trajectories then
guality of p is “probably close” to quality of target.

Suggests a type of reduction:
1) Somehow observe trajectories of a good policy.
2) Learn a classifier to (approximately) imitate the policy.

How can we observe a good policy?
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Reduction 1:

Learning to Solve Small Problems

[Khardon, AlJ 1999], [Martin&Geffner, KR 2000], [Yoon,Fern & Givan, 2002]

solutions policy
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Generalizing to Large Problems

[Khardon, AlJ 1999], [Martin&Geffner, KR 2000], [Yoon,Fern & Givan, 2002]

small

Small Problem | problems solutions policy
L »|Planner »| Learner >
Distribution

Why expect policies to generalize to large problems?

* Select good policy language bias.
~ Restrict expressiveness to avoid overfitting.
~ But expressive enough to represent good policies.
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Experimental Domains
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Unsolved Problems

° Select policies without iImmediate access to
small problems

~ Can we learn directly in a large domain?

° Improving buggy policies

~ All previous technigues produce policies with
occasional fatal flaws.

° Our approach: use standard MDP technigue of
(approximate) policy iteration
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Flowchart View of Policy lteration

V,(s) = “value” of following p starting at s

Compute V, 7 Vp > Choose best action
at all states J at each state

Tp
{ Current Policy }4

Improved Policy p’

Guaranteed finite convergence to optimal policy.

Problem:
too many states
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Approximate Policy lteration

Usual Approach: reduce to value function approximation

Compute V, at some W V, samples _, Learn approximation
states by simulation. J of V,

P
[ Current Policy }4

P’ = greedy look ahead Wrth

 Value functions can be harder to represent than policies.

* Learning a policy directly may be more effective.
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Approximate Policy lteration

Our Approach: reduce to classifier learning

Sample p’ trajectories ) p’ trajectories Learn approximation
by simulation J of p’

p 4
[ Current Policy 14

Reflnement: Reduce to cost-sensitive classification.
Costs based on Q-values.
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Rollout: Computing p’ Trajectories

Trajectory under p’
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° For our relational planning domains we use
the FF-plan plangraph heuristic
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Initial Policy Choice

° Policy Iiteration requires an initial base policy

° Options include:
- random policy
~ greedy policy with respect to a planning heuristic
~ policy learned from small problems
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APl Results

Starting with flawed policies learned from small problems

SBW(10): Starting with policies from PI SPW(10): Starting with policies from PI
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Starting with a policy greedy with respect to a
main independent heuristic
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Ongoing and Future Work

* Explore new policy languages
~ E.g. relative value functions [Dietterich & Wang, NIPS'02]

° Approximation guarantees.
° Generalize to domains that “require search”.
° |ncorporating deductive reasoning.

° Generalize to games and partial observabillity.
- E.g. the game of Hearts.
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